
A messy state of the union:
Taming the Composite State Machines of TLS

Benjamin Beurdouche, Karthikeyan Bhargavan,
Antoine Delignat-Lavaud, Cédric Fournet,
Markulf Kohlweiss, Alfredo Pironti,
Pierre-Yves Strub, Jean Karim Zinzindohoue

http://smacktls.com

Modern protocols negotiate crypto parameters
(RSA, DHE, PSK)

(Cert, Password)
(AEAD, RC4-HMAC)

How do we implement such protocols correctly?

2015 TLS1.3?

OpenSSL, SecureTransport, NSS,
SChannel, GnuTLS, JSSE, PolarSSL, …
many bugs, attacks, patches every year

mostly for small simplified models of TLS

Client Server

Client Server

Client Server

RSA
(EC)DHE

RSA + DHE + ECDHE
+ Session Resumption
+ Client Authentication

miTLS
[IEEE S&P’13, CRYPTO’14]

http://mitls.org

Can this proof technique be
applied to OpenSSL?

State machine
for common
Web configurations

+ Fixed_DH
+ DH_anon
+ PSK
+ SRP
+ Kerberos
+ *_EXPORT
+ …
We cannot
ignore all these
because they
share code/keys
with RSA/DHE

Does OpenSSL conform to
the miTLS state machine?

We built a test framework

State machine
for common
Web configurations

Unexpected state transitions
in OpenSSL, NSS, Java,
SecureTransport, …
•  Required messages are

allowed to be skipped
•  Unexpected messages are

allowed to be received
•  CVEs for many libraries
How come all these bugs?
•  In independent code bases,

sitting in there for years
•  Are they exploitable?

Unexpected state transitions
in OpenSSL, NSS, Java,
SecureTransport, …
•  Required messages are

allowed to be skipped
•  Unexpected messages are

allowed to be received
•  CVEs for many libraries
How come all these bugs?
•  In independent code bases,

sitting in there for years
•  Are they exploitable?

Culprit:

TLS specifies a ladder diagram with optional messages
•  Handshake ends with agreement on transcript

RSA
(EC)DHE

Treat ServerKeyExchange as optional
•  Server decides to send it or not
•  Client tries to handle both cases
•  Consistent with Postel’s principle:

“be liberal in what you accept”

Unexpected cases at the client

Clients should reject these cases
•  In practice: clients accept and perform

unexpected cryptographic computations,
breaking the security of TLS

Network attacker impersonates
S.com to a Java TLS client
1.  Send S’s cert
2.  SKIP ServerKeyExchange

(bypass server signature)
3.  SKIP ServerHelloDone
4.  SKIP ServerCCS

(bypass encryption)
5.  Send ServerFinished

using uninitialized MAC key
(bypass handshake integrity)

6.  Send ApplicationData
(unencrypted) as S.com

TLS 1.0 supported weakened
ciphers to comply with export
regulations in 1990s

EXPORT deprecated in 2000

•  Can be triggered by sending an
unexpected ServerKeyExchange

A man-in-the-middle attacker can:
•  impersonate servers that support RSA_EXPORT,
•  at buggy clients that allow ServerKeyExchange in RSA

Many servers in 2015 offer RSA_EXPORT
•  37% of browser-trusted servers in March 2015
•  After FREAK: came down to 6.5% [Zmap team, 2015]
•  See: www.smacktls.com/#freak
•  Vulnerable sites included nsa.gov, hsbc.com, …

Factoring 512-bit RSA keys is easy
•  First broken with CADO-NFS in 2000 [EuroCrypt’00]
•  Now: 12 hours and $100 on Amazon EC2 [N. Heninger]

Client-side state machine bugs are widespread
•  Same bug in SChannel, SecureTransport, IBM JSSE, …
•  CVEs for all major libraries and web browsers

OpenSSL has two state machines (client/server)
•  A bit of a mess: many protocol versions,

extensions, optional, and experimental features

We rewrote this code and verified it with Frama-C
•  750 lines of code, 460 lines of specification
•  1 month of a PhD student’s time
•  Reused logical specification from miTLS
•  Eliminates all state machine bugs in OpenSSL
•  No impact on performance.

Cryptographic protocol testing needs work
•  We used a specification-driven fuzzing tool to find

critical state machine bugs in a number of libraries
•  This should be done systematically by developers

Open source code is not immune from attack
•  Security bugs can hide in plain sight for years

Verification of production code is feasible
•  We focused on the core state machine,

one small step towards verifying OpenSSL

Beware of deliberately weakened cryptography
•  Backdoors come back to bite you even decades later

