
Implementing TLS with
Verified Cryptographic Security

Karthikeyan Bhargavan ∗ 1, Cédric Fournet † 2, Markulf Kohlweiss ‡ 2,
Alfredo Pironti § 1, and Pierre-Yves Strub ¶ 3

1INRIA
2Microsoft Research

3IMDEA Software

Draft, March 2013

Abstract

TLS is possibly the most used protocol for secure communications, with a 18-year history
of flaws and fixes, ranging from its protocol logic to its cryptographic design, and from the
Internet standard to its diverse implementations.

We develop a verified reference implementation of TLS 1.2. Our code fully supports
its wire formats, ciphersuites, sessions and connections, re-handshakes and resumptions,
alerts and errors, and data fragmentation, as prescribed in the RFCs; it interoperates with
mainstream web browsers and servers. At the same time, our code is carefully structured
to enable its modular, automated verification, from its main API down to computational
assumptions on its cryptographic algorithms.

Our implementation is written in F# and specified in F7. We present security specifica-
tions for its main components, such as authenticated stream encryption for the record layer
and key establishment for the handshake. We describe their verification using the F7 type-
checker. To this end, we equip each cryptographic primitive and construction of TLS with a
new typed interface that captures its security properties, and we gradually replace concrete
implementations with ideal functionalities. We finally typecheck the protocol state machine,
and obtain precise security theorems for TLS, as it is implemented and deployed. We also
revisit classic attacks and report a few new ones.

∗karthikeyan.bhargavan@inria.fr
†fournet@microsoft.com
‡markulf@microsoft.com
§alfredo.pironti@inria.fr
¶pierre-yves@strub.nu

1

Contents
1 Introduction 3

1.1 Transport Layer Security . 4
1.2 Compositional, Automated Verification . 5

2 A Modular Implementation of TLS 6
2.1 API Overview . 6
2.2 Modules and Interfaces . 7
2.3 Modular Architecture for TLS . 7
2.4 Experimental Evaluation . 9

3 Cryptographic Security by Typing 11
3.1 Games, Ideal Functionalities, and Typed Interfaces. 12
3.2 Indexes for Multi-instance, Agility, and Corruption . 15

4 Authenticated Encryption for TLS Streams 17
4.1 Traffic Analysis and Length Hiding . 18
4.2 Authenticated Encryption Schemes . 19
4.3 Related Work on Authenticated Encryption . 23

5 The Handshake Protocol 23
5.1 The Handshake Interface . 24
5.2 Handshake Security and Modular Verification . 27
5.3 Key distribution for TLS master secrets . 28
5.4 Related Work on Key Exchange . 36

6 Main API & Theorems for TLS 36
6.1 TLS API . 36
6.2 TLS Security . 38
6.3 Security for ‘untyped’ adversaries . 39
6.4 Verified TLS Applications . 40

7 Limitations and Future Work 41

2

1 Introduction
Transport layer security (TLS) is possibly the most used security protocol; it is widely deployed
for securing web traffic (HTTPS) and also mails, VPNs, and wireless communications. Reflect-
ing its popularity, the security of TLS has been thoroughly studied, with a well-documented, 18-
year history of attacks, fixes, upgrades, and proposed extensions [e.g. Freier et al., 2011, Dierks
and Allen, 1999, Dierks and Rescorla, 2006, 2008, Rescorla et al., 2010, Langley and Moeller,
2010]. Some attacks target the protocol logic, for instance causing the client and server to nego-
tiate the use of weak algorithms even though they both support strong cryptography [Langley,
2011]. Some exploit cryptographic design flaws, for instance using knowledge of the next IV to
set up adaptive plaintext attacks [Moeller, 2004]. Some, such as padding-oracle attacks, use a
combination of protocol logic and cryptography, taking advantage of error messages to gain in-
formation on encrypted data [Vaudenay, 2002, Canvel et al., 2003, Yau et al., 2005]. Others rely
on various implementation errors [Bleichenbacher, 1998, Lawall et al., 2010, Klima et al., 2003]
or side channels [Brumley and Boneh, 2003]. Further attacks arise from the usage or configura-
tion of TLS, rather than the protocol itself, for instance exploiting poor certificate management
or gaps between TLS and the application logic [Ray, 2009, Georgiev et al., 2012]. Overall, the
mainstream implementations of TLS still require several security patches every year.

Meanwhile, TLS security has been formally verified in many models, under various simpli-
fying assumptions [Paulson, 1999, Dı́az et al., 2004, He et al., 2005, Ogata and Futatsugi, 2005,
Morrissey et al., 2008, Gajek et al., 2008, Kamil and Lowe, 2008, Jager et al., 2012]. While
all these works give us better confidence in the abstract design of TLS, and sometimes reveal
significant flaws, they still ignore most of the details of RFCs and implementations.

To achieve provable security for TLS as it is used, we develop a verified reference implemen-
tation of the Internet standard. Our results precisely relate application security at the TLS in-
terface down to cryptographic assumptions on the algorithms selected by its ciphersuites. Thus,
we address software security, protocol security, and cryptographic security in a common imple-
mentation framework. In the process, we revisit known attacks and discover new ones: an alert
fragmentation attack (§2), and a fingerprinting attack based on compression (§4). Our two main
goals are as follows:
(1) Standard Compliance Following the details of the RFCs, we implement and verify the con-
crete message parsing and processing of TLS. We also support multiple versions (from SSL 3.0
to TLS 1.2) and ciphersuites, protocol extensions, sessions and connections (with re-handshakes
and resumptions), alerts and errors, and data fragmentation.

The TLS standard specifies the messages exchanged over the network, but not its application
programming interface (API). Since this is critical for using TLS securely, we design our own
API, with an emphasis on precision—our API is similar to those provided by popular imple-
mentations, but gives more control to the application, so that we can express stronger security
properties: §4 explains how we reflect fragmentation and length-hiding, to offer some protec-
tion against traffic analysis; §6 explain how we report warnings, changes of ciphersuites, and
certificate requests.

We illustrate our new API by programming and verifying sample applications. We also im-
plement .NET streams on top of it, and program minimal web clients and servers, to confirm
that our implementation interoperates with mainstream implementations, and that it offers rea-
sonable usability and performance. (In contrast, most verified models are not executable, which
precludes even basic functionality testing.) Experimentally, our implementation also provides
a convenient platform for testing corner cases, trying out potential attacks, and analyzing pro-
posed extensions and security patches. In the course of this work, we submitted errata to the
IETF1.

1http://www.rfc-editor.org/errata_search.php?rfc=5246&eid=2864 and http://www.
rfc-editor.org/errata_search.php?rfc=5246&eid=2865

3

http://www.rfc-editor.org/errata_search.php?rfc=5246&eid=2864
http://www.rfc-editor.org/errata_search.php?rfc=5246&eid=2865
http://www.rfc-editor.org/errata_search.php?rfc=5246&eid=2865

(2) Verified Security Following the provable security approach of computational cryptogra-
phy, we show the privacy and integrity of bytestreams sent over TLS, provided their connec-
tion keys were established using a strong ciphersuite between principals using secure long-term
keys. Unavoidably, an active adversary may observe and disrupt encrypted network traffic below
TLS. In brief, our main results show that a probabilistic, polynomial adversary cannot achieve
more, except with a negligible probability: even with chosen adaptive plaintext and cipher-
text bytestreams, it learns nothing about the content of their communication, and cannot cause
them to accept any other content. These results are expressed using indistinguishability games,
whereby the communication content is replaced with zeros before sending, and restored by table
lookups after receiving.

Thus, we achieve the kind of cryptographic results traditionally obtained for secure channels,
but on an unprecedented scale, for an executable, standard-compliant, 5,000-line functionality,
rather than an abstract model of TLS—dozens of lines in pseudocode in Jager et al. [2012, fig. 3]
and Gajek et al. [2008, p. 4]. In the process of verifying our implementation, we also establish
functional properties, logical authentication goals, and state machine invariants.

In the rest of this section, we summarize the challenges involved in achieving our goals,
namely accounting for the complexity of TLS, and automatically verifying a large implementa-
tion with precise cryptographic guarantees.

1.1 Transport Layer Security
TLS is an assembly of dynamically-configured protocols, controlled by an internal state machine
that calls into a large collection of cryptographic algorithms. (§2 reviews the TLS architecture.)
This yields great flexibility for connecting clients and servers, potentially at the cost of secu-
rity, so TLS applications should carefully configure and review their negotiated connections
before proceeding. Accordingly, we prove security relative to the choice of protocol version,
ciphersuite, and certificates of the two parties.
Versions, Ciphersuites, and Algorithms Pragmatically, TLS must maintain backward compati-
bility while providing some security. Indeed, 5 years after the release of TLS 1.2, which fixes
several security weaknesses, RC4 remains the most popular cipher, most browsers still negoti-
ate TLS 1.0, and many still accept SSL2 connections! It is thus crucial to assess the security of
TLS as a whole, even if its usage of cryptography is outdated. As most implementations do, our
codebase supports all protocol versions from SSL 3.0 till TLS 1.2 [Freier et al., 2011, Dierks
and Allen, 1999, Dierks and Rescorla, 2006, 2008]. We decided not to support SSL2 at all, since
its usage is unsafe and now prohibited [Turner and Polk, 2011].

Many algorithms, such as MD5, DES, or PKCS#1, are eventually broken or subsumed by
others, so TLS features cryptographic agility, enabling users to choose at runtime between dif-
ferent methods and algorithms for similar purposes. Ciphersuites and extensions are its main
agility mechanisms; together with the protocol version, they control the method and algorithms
for the key exchange and the transport layer. Older ciphersuites can be very weak, but even the
latest ciphersuites may not guarantee security: as a cautionary tale, Brumley et al. [2011] re-
port, exploit and fix a “bug attack” in the implementation of elliptic-curve multiplication within
OpenSSL, which left many advanced ciphersuites exposed to attacks for years. Accordingly,
our formal development fully supports cryptographic agility, in the spirit of Acar et al. [2010],
and provides security relative to basic cryptographic assumptions (say, IND-CPA or PRF) on
the algorithms chosen by the ciphersuite. Thus, we obtain security for connections with strong
ciphersuites running side-by-side with insecure connections with weak ciphersuites.
Side Channels and Traffic Analysis Our API provides fine-grained control for fragmentation and
padding; this enables applications to control the amount of information they leak via network
traffic analysis. Our verification also explicitly handles many runtime errors, thus reflecting
their potential use to leak secret information. Thus, our verification catches the padding oracle

4

attack of TLS 1.0 [Vaudenay, 2002, Canvel et al., 2003] as a type-abstraction error. We also
independently caught the truncated-MAC attack reported by Paterson et al. [2011].

On the other hand, our verification does not account for timing. Following the standard,
we only try to mitigate known timing channels by having a uniform flow, for instance ensuring
that the same cryptographic operations are performed, both in normal execution and in error
conditions.

1.2 Compositional, Automated Verification
To cope with the complexity of TLS and prove security on a large amount of code, we rely both
on compositionality and on automation. We extend the cryptographic verification by typing
approach of Fournet et al. [2011]. The main technical novelty is to keep track of conditional
security using type indexes (see §3.2). For instance, the index of a TLS connection includes the
algorithms and certificates used to establish the connection, so that we can specify the security
of each connection relative to this context. Cryptographically, indexes are similar to session
identifiers in the universal composability (UC) framework. Another central idea is to rely on
type abstraction to specify confidentiality and integrity, enabling us to express our main security
properties in just a few lines of typed declarations.

The core contribution of this work is our modular implementation of TLS and our com-
positional verification approach. Our presentation focuses on the main API and the interfaces
of two core internal modules. The stateful authenticated encryption module (StAE), explained
in §4, implements record-layer cryptography. For modes based on block ciphers, we provide
length-hiding features as proposed and analyzed by Paterson et al. [2011]. The handshake mod-
ule (HS) implements the key exchange mechanisms of TLS. We specify ideal typed interfaces
for StAE and HS that suffice to prove application-level security for TLS. Our main formal con-
tributions are to verify that the record layer securely implements the StAE interface for a range
of authenticated encryption mechanisms (Theorem 4 in §4); the handshake protocol implements
the HS interface, with security guarantees when using RSA and DH (Theorem 5 in §5); and
the TLS protocol logic, dealing with application data, alerts, and multiple connections, securely
implements our main API, given any secure implementations of StAE and HS (Theorem 6 in
§6).
Prior Verification Work on TLS Implementations. We limit our discussion of related work to
the verification of implementations; other works on formal aspects of TLS are discussed through
the paper. To our knowledge, Bhargavan et al. [2012] present the only prior computational
security theorems for a TLS implementation. They conduct extensive verification of the protocol
logic by model extraction from F# to ProVerif [Blanchet, 2001] and CryptoVerif [Blanchet,
2006]. On the other hand, their Dolev-Yao models do not cover binary formats (excluding any
bytestream, fragmentation and padding issue), nor the properties of the underlying algorithms,
and their computational models cover only the cryptographic core of one ciphersuite. Their
results are less precise than ours (notably as regards secrecy) and blind to the cryptographic
weaknesses of TLS 1.0.

Chaki and Datta [2009] verify the SSL 2.0/3.0 handshake implementation in OpenSSL for
authentication and secrecy properties by model checking. Their analysis finds rollback attacks
but applies only to fixed configurations, and they assume a symbolic model of cryptography.
Others [Jürjens, 2006, Avalle et al., 2011] verify Java implementations of the handshake protocol
using logical provers, also in the symbolic model.
Contents The paper is organized as follows. §2 informally presents and evaluates our modular
reference implementation. §3 explains our approach to cryptographic verification by typing. §4
handles length-hiding stream encryption. §5 deals with the handshake. §6 presents our main
API and theorems for TLS. §7 discusses limitations of our approach and future work.

TLS is large and complicated, and so is any formal security statement on its implementa-
tion. We strive to give a precise description of our results using sample code and interfaces,

5

DHGroup

DH

CRE

PRF

RSA

Cert

Sig

SessionDB

StAE

LHAE

Enc

MAC

Record

Dispatch

TCP

Untyped Adversary

Encode

LHAEPlain

StPlain

TLSFragment

Alert
Datastream

Handshake (and CCS)

TLSInfo TLSConstants

Handshake/CCS

TLS
Record

AppData

Base Bytes

Untyped API
Adversary

RPC

RPCPlain Application

TLS API

Alert
Protocol

AppData
Protocol

Nonce

TLS

CoreCrypto

RSAKey

Auth

AuthPlain

Extensions

1

2

3 4

5

6
7

Range

8

9 Error

Figure 1: Modular implementation of TLS

but we necessarily omit many details. We refer to the standard for a complete protocol descrip-
tion, and to our full development at http://mitls.rocq.inria.fr/ for the annotated
source code, a companion paper with additional cryptographic assumptions and proofs, and a
discussion of attacks.

2 A Modular Implementation of TLS

2.1 API Overview
Our application interface (see Fig. 13 in §6) is inspired by typical APIs for TLS libraries and
provides similar functionalities. It is thread safe, and does not allocate any TLS-specific thread,
essentially leaving scheduling and synchronization in the hands of the application programmer.
Cryptographically, we can thus treat our whole implementation as a probabilistic polynomial
time (p.p.t.) module, to be composed with a main p.p.t. program representing the adversary.

Our reference implementation consists of a dynamically linked library (DLL) with an inter-
face TLSInfo that declares various types and constants, e.g. for ciphersuites, and a main interface
TLS for controlling the protocol. To use it, the application programmer provides a DataStream
module that uses TLSInfo and defines the particular streams of plaintext application data he in-
tends to communicate over TLS, and a main program that calls TLS. In addition, application
code may use any other libraries and export its own interfaces.

Application code may create any number of TLS connections, as client or server, by provid-
ing some TCP connection and some local configuration that indicates versions, ciphersuites and
certificates to use, and sessions to re-use. Our API returns a stateful connection endpoint (with
an abstract type) that can then be used by the application to issue a series of commands, such as

6

read and write to communicate data once the connection is opened, rekey and rehandshake to
trigger a new handshake, and shutdown to close the connection. Each command returns either a
result, for instance the data fragment that has been read, or some event, for instance an alert, a
certificate authorization request, or a notification that the current handshake is complete. At any
point, the application can read the properties of its connection endpoints, which provide detailed
local information about the current ciphersuites, certificates, and security parameters, bundled in
a datatype named an epoch. A given connection may go through a sequence of different epochs,
separated by complete handshakes, each with their own security parameters, so the application
would typically inspect the new connection epoch when notified that the handshake is complete,
and before issuing a write command for sending any secret data.

2.2 Modules and Interfaces
Our implementation is written in F#, a variant of ML for the .NET platform, and specified
in F7 [Bengtson et al., 2011]. It is structured into 45 modules (similar to classes or components
in other languages) each with an interface and an implementation. Each interface declares the
types and functions exported by the module, copiously annotated with their logical specification.

We informally present the verification approach developed in the next sections. We use
interfaces to specify the security properties of our modules and to control their composition. In
particular, §3 explains how we use interfaces to express various cryptographic properties.

The F7 typechecker can verify each module independently, given as additional input a list
of interfaces the module depends on. Assuming the specification in these interfaces, F7 verifies
the module implementation and checks that it meets the specification declared in its own inter-
face. Both tasks entail logical proof obligations, which are automatically discharged by calling
Z3 [de Moura and Bjørner, 2008], an SMT solver. Our ‘makefile’ automates the process of
verifying modules while managing their dependencies.

After verification, all F7 types and specifications are erased, and the module can be compiled
by F#.

Our type-based cryptographic verification consists of a series of idealization steps, one mod-
ule at a time, starting from nonces and the authentication of the public-key materials till the use
of the record keys for authenticated encryption. The numbers in Fig. 1 indicate the order of
idealization. Each step is conditioned by cryptographic assumptions and typing conditions, to
ensure its computational soundness; it enables us to replace a concrete module implementa-
tion by a variant with stronger security properties; this variant can then be re-typechecked, to
show that it implements a stronger ideal interface, which in turn enables further steps. Finally,
we conclude that the idealized variant of our TLS implementation is both perfectly secure (by
typing) and computationally indistinguishable from our concrete TLS implementation.

2.3 Modular Architecture for TLS
Fig. 1 gives our software architecture for TLS. Each box is an F# module, specified by a typed
interface. These modules are (informally) grouped into components.

In the Base component, Bytes wraps low-level, trusted .NET primitive operations on byte
arrays, such as concatenation; TCP handles network sockets, and it need not be trusted; Core-
Crypto is our interface to trusted core algorithms, such as the SHA1 hash function and the
AES block cipher; it can use different cryptographic providers such as .NET or Bouncy Castle.
Other modules define constants, ciphersuite identifiers and binary formats; these modules are
fully specified and verified. TLSInfo defines public data structures for sessions, connections and
epochs (see §5) giving access for instance to the negotiated session parameters.

The TLS protocol is composed of two layers. The record layer is responsible for the secrecy
and authenticity of individual data fragments, using the authenticated encryption mechanisms

7

described in §4. It consists of several modules: Record is TLS-specific and deals with head-
ers and content types, whereas StAE, LHAE and ENC provide agile encryption functionalities,
each parameterized by a plaintext module, as explained in §3. Finally, MAC provides various
agile MAC functions on top of CoreCrypto and implements the ad hoc keyed hash algorithms
of SSL 3.

The upper layer consists of four sub-protocols, respectively dealing with the handshake,
change-cipher-spec signals (CCS), alerts, and application data. The Dispatch module inter-
leaves the outgoing messages sent by these sub-protocols into a single stream of fragments,
tagged with their content type, possibly splitting large messages into multiple fragments, and
conversely dispatches incoming fragments to these protocols, depending on their content type.
Not all possible message interleavings are valid; for instance application data should never be
sent or accepted before the first handshake successfully completes (establishing a secure chan-
nel), and no data should be delivered after receiving a fatal alert. Except for these basic rules,
the RFC does not specify valid interleavings; this complicates our verification and, as illustrated
below, enables subtle attacks when combined with fragmentation. Dispatch relies on a state ma-
chine to enforce the safe multiplexing of sub-protocols; to this end, each sub-protocol signals
any significant change in its own internal state. For instance, the handshake protocol signals the
availability of new keys, the sending of its Finished message, and its successful completion. To
our knowledge, our model is the first to account for this important aspect of TLS implementa-
tions. (In contrast, most handwritten cryptographic models cover a single, sequential trace of
inputs and outputs for each role of the protocol—for instance an initial session establishment
followed by a single data connection.)

The handshake protocol, detailed in §5, negotiates the connection parameters (such as pro-
tocol versions, ciphersuites, and extensions) and establishes the shared keys for the record layer.
To this end, it relies on generic PRF modules and key exchange algorithms (e.g. RSA-based
encryption and Diffie-Hellman exchange). In the TLS terminology, a session identifies a set of
security parameters, the peers, and a shared master secret. Each full handshake yields a new
session, with its own master secret. Instead, an abbreviated handshake resumes an existing
session, retrieving its master secret from a local database. In both cases (full or abbreviated),
a new epoch begins, with keys derived from the master secret together with some fresh ran-
dom values. The same connection may rely on several successive epochs to refresh keys, or
to achieve stronger peer authentication, possibly with different security properties. Conversely,
several connections may resume from the same session. (For example, most web browsers open
concurrent connections for getting the files that constitute a page.)

The alert protocol handles warnings and fatal errors; it tells the dispatcher when to close a
connection.

The application-data protocol handles messages on behalf of the TLS application; it is pa-
rameterized by a DataStream module provided by the application.

At the toplevel, TLS implements our main API, described in §6. Like other mainstream APIs,
it is designed to hide most internal details, while providing enough control to the application.
The API is event based, meaning that each time the user invokes a function, the returned value
can notify the user that an event occurred. It signals any security-relevant out-of-band events, for
example explicitly asking for certificate authorization, or notifying a change of epoch. Simpler,
more abstract interfaces may be programmed on top of it, for instance to implicitly handle (or
reject) re-handshakes. Before evaluating our implementation, we discuss two attacks involving
fragmentation and multiple epochs.
Renegotiating Peer Identities (an existing attack) Ray [2009] presents an attack exploiting
the mis-attribution of application data to epochs. Until a a recent protocol extension [Rescorla
et al., 2010], TLS did not cryptographically link successive epochs on the same connection:
as each handshake completes, the two parties agree on the new epoch, but not necessarily on
prior epochs. Their man-in-the-middle attack proceeds as follows: when a target client tries
to connect to a server, the attacker holds the client connection, performs a handshake with the

8

Versions SSL 3.0; TLS 1.0; TLS 1.1; TLS 1.2
Key Exchange RSA; DHE; DH anon
Cipher NULL; RC4 128; 3DES EDE CBC;

AES 128 CBC; AES 256 CBC
MAC NULL;MD5;SHA;SHA256;SHA384
Extensions Renegotiation Indication

(a)

Component F# (LOC) F7 (LOC) F7 (S)
Base 945 581 11

TLS Record 826 511 77
Handshake/CCS 2 400 777 413

Alert Protocol 184 119 105
AppData Protocol 139 113 34

TLS API 640 426 309
Total 5 134 2 527 949

(b)

Figure 2: 2(a): Implemented features and algorithms, 2(b): Code size and verification time.

server, sends some (partial) message to the server, then forwards all client-server traffic. As
the client completes its first handshake, the server instead enters its second epoch. If the server
ignores the change of epoch, then it will treat the message injected by the attacker concatenated
with the first message of the client as a genuine message of the client.

Surprisingly, existing TLS APIs have no reliable mechanism to notify epoch changes, even
when the peer identity changes. Instead, the extension implicitly authenticates prior epochs
in Finished messages [Rescorla et al., 2010]. We implement this extension, and in addition,
our API immediately notifies any epoch change, and separately tracks application data from
different epochs.
Alert fragmentation (a new attack) We discovered another, similar interleaving attack, against
all versions of TLS, this time involving the alert protocol. Unlike application data, alert mes-
sages can be sent and received before completing the first handshake. Unlike handshake mes-
sages, alert messages are not included in the Finished message computation. Alert messages
are two bytes long, hence they can also be fragmented by the attacker. Our attack proceeds as
follows: when a client-server connection begins, the attacker injects a one-byte alert fragment
x during the first handshake; according to the standard, this byte is silently buffered; any time
later, after completion of the handshake, as the first genuine 2-byte alert message yz is sent on
the secure connection, the alert xy is received and processed instead. This clearly breaks alerts
authentication.

Experimentally, we confirmed that at least OpenSSL is subject to this attack, transforming
for instance a fatal error or a connection closure into an ignored warning, while other imple-
mentations reject fragmented alerts—a simple fix, albeit against the spirit of the standard. Our
implementation simply checks that the alert buffer is empty when a handshake completes, and
otherwise returns a fatal error.

2.4 Experimental Evaluation
Our implementation currently supports the protocol versions, algorithms, and extensions listed
in Fig. 2(a), and hence all the ciphersuites obtained by combining these algorithms. Conversely,
our implementation does not yet support elliptic curve algorithms, AEAD ciphers such as AES-
GCM, most TLS extensions, or TLS variants such as DTLS.
Interoperability We tested interoperability against the command line interface of OpenSSL

9

Ciphersuite F# (BC) OpenSSL Oracle JSSE
KEX Enc MAC HS/s MiB/s HS/s MiB/s HS/s MiB/s
RSA RC4 MD5 305.25 30.17 292.04 226.51 431.66 53.34
RSA RC4 SHA 291.37 27.85 288.74 232.42 446.69 39.65
RSA 3DES SHA 267.09 8.40 283.04 22.95 421.59 8.34
RSA AES128 SHA 278.71 18.54 285.35 234.41 419.20 27.58
RSA AES128 SHA256 278.71 16.50 281.92 128.33 432.70 23.69
RSA AES256 SHA 291.37 16.86 282.89 204.47 - -
RSA AES256 SHA256 267.09 15.16 307.72 119.42 - -
DHE 3DES SHA 20.16 8.37 58.07 22.99 45.72 8.21
DHE AES128 SHA 20.41 18.59 57.06 244.30 46.08 27.72
DHE AES128 SHA256 19.99 16.45 58.33 128.34 45.03 23.84
DHE AES256 SHA 20.29 16.72 56.83 203.01 - -
DHE AES256 SHA256 20.16 14.86 59.52 120.96 - -

Figure 3: Performance benchmarks (OpenSSL 1.0.1e as server).

1.0.1e and GnuTLS 3.1.4, and against the NSS 3.12.8 and the Oracle JSSE 1.7 libraries. We
also implemented the .NET Stream interface on top of our TLS API, used it to program a multi-
threaded HTTPS server, and tested it against Firefox 16.0.2, Safari 6.0.2, Chrome 23.0.1271.64
and Internet Explorer 9.0.5 web browsers, using different protocol versions and ciphersuites.
Conversely, we programmed and tested an HTTPS client against an Apache 2.2.20-mod-ssl web
server. Our implementation correctly interoperates, both in client and in server mode, with all
these implementations, for all the protocol versions and ciphersuites we support. Of these, NSS
only implements up to TLS 1.0 and Oracle JSSE does not support AES256. Our interoperability
tests included session resumption, rekeying, and renegotiation.
Performance Evaluation We evaluate the performance of our implementation, written in F#
and linked to the Bouncy Castle C# cryptographic provider, against two popular TLS imple-
mentations: OpenSSL 1.0.1e, written in C and using its own cryptographic libraries, and Oracle
JSSE 1.7, written in Java and using the SunJSSE cryptographic provider. Our code also consis-
tently outperforms the rudimentary TLS client distributed with Bouncy Castle.

We tested clients and servers for each implementation against one another, running on the
same host to minimize network effects. Figure 3 reports our results for different clients and ci-
phersuites with OpenSSL as server. We measured (1) the number of Handshakes completed per
second; and (2) the average throughput provided on the transfer of a 400 MB random data file.
(Server-side results are similar.) For RSA key exchange, our implementation has a handshake
rate similar to that of OpenSSL but slower than Oracle JSSE. Our throughput is significantly
lower than OpenSSL and is closer to Oracle JSSE. The numbers for throughput and for DHE
key exchanges are closely linked to the underlying cryptographic provider, and we pay the price
of using Bouncy Castle’s managed code. (Using instead the .NET native provider increases the
throughput by 20% but hinders portability.)

Our reference implementation is designed primarily for modular verification, and has not
(yet) been optimized for speed. Notably, our code relies on naı̈ve data structures that facilitate
their specification. For example, we represent bytes using functional arrays, which involve a
lot of dynamic allocation and copying as record fragments are processed. A trusted library
implementing infix pointers to I/O buffers with custom memory management would improve
performance, with minimal changes to our verified code, but we leave such optimizations as
future work.
Code Size and Verification Time Compared with production code, our implementation is
smaller; it has around 5 KLOC excluding comments, compared with about 50 KLOC for
OpenSSL (only TLS code) and 35 KLOC for Oracle JSSE. This different is due partly to the
fact that we support fewer ciphersuites and extensions; the rest can be attributed to the brevity of
F# code. Still, we believe ours is the first cryptographic verification effort at this scale. Fig. 2(b)

10

gives the size of each component in our implementation, the size of its F7 specification, and the
verification time for the typechecked components. Overall, typechecking the whole implemen-
tation takes 15 minutes on a modern desktop.

3 Cryptographic Security by Typing
We verify TLS using F7, a refinement typechecker for F#. In addition to ordinary type safety
(preventing e.g. any buffer overflow) it enables us to annotate types with logical specifications
and to verify their consistency by typing. Its core type system Bengtson et al. [2011] has been
extended in several directions Bhargavan et al. [2010], Swamy et al. [2011], Backes et al. [2009,
2010, 2012]; in particular Swamy et al. [2011] provide a mechanized theory for a language
that subsumes F7. We follow the notations and results of its probabilistic variant Fournet et al.
[2011], presented below.
F7 Types A program is a sequential composition of modules, written A1 · A2 · . . . · An. Each
module has a typed interface that specifies the types, values, and functions it exports. A module
is well-typed, written I1, . . . , I` ` A ; I , when it correctly implements I using modules with
interfaces I1, . . . , I`. A program is well-typed when its modules are well-typed in sequence.
The core typing judgment I ` e : t states that expression e has type t in typing environment I .
Types t include standard F# types like integers, references, arrays and functions, plus refinement
types and abstract types.
Logical refinements Let φ range over first-order logical formulas on F# values. The refinement
type x:t{φ} represents values x of type t such that formula φ holds (the scope of x is φ). For
instance, n:int{0 ≤ n} is the type of positive integers. Formulas may use logical functions and
predicates, specified in F7 interfaces or left uninterpreted. For instance, let ‘bytes’ abbreviate
the type of byte arrays in F#; its refinement b:bytes{Length(b)=16}, the type of 16-byte arrays,
uses a logical function Length on bytes. and, to verify that byte arrays have this type, it may be
enough to specify Length for empty arrays and concatenations. Refinements may specify data
formats as above (for integrity) and also track runtime events (for authenticity). For instance, c:
cert{Authorized(u,c)}may represent an X.509 certificate that user u has accepted by clicking on
a button. Formally, such security events are introduced as logical assumptions (assume φ) in F#
code and F7 interfaces; conversely, they may appear in verification goal, expressed as assertions
(assert φ). Logical specifications and assumptions must be carefully written and reviewed, since
they condition our security interpretation of types [see e.g. Bhargavan et al., 2010, Swamy et al.,
2011].
Abstract Types An interface may declare a type as abstract (e.g. type key) and keep its repre-
sentation private (e.g. 16-byte arrays); typing then ensures that any module using this interface
will treat key values as opaque, thereby preserving their integrity and secrecy. Conversely, the
module that implements key would include a concrete type declaration, e.g. type key = b:bytes
{Length{b} = 16}, and use it to implement the rest of the interface. Besides, abstract types may
themselves be indexed by values, e.g. type (;id:t)key is the type of keys indexed by a value id
of type t, which may indicate the usage of those keys; typing then guarantees that any module
using the interface won’t mix keys for different usages.

The rest of the type system tracks refinements and abstract types. For example, the de-
pendent function type x:t{φ} → y:t′{φ′} represents functions with pre-condition φ and post-
condition φ′ (the scope of x is φ, t′ and φ′), and both t and t′ may be indexed abstract types. We
will see various examples in the types for authenticated encryption below.
Safety and Perfect Secrecy in F7 (Review) Fournet et al. [2011] formalize a probabilistic
variant of F7 and develop a framework for the modular cryptographic verification of protocols
coded in F#. (Küsters et al. [2012] adopt a similar approach for programs in Java.) We recall
their main theorems.

11

A program is safe if, in every run of the program, every assert logically follows from prior
assumes. The main property of the type system is that well-typed expressions are always safe.

Theorem 1 (Type Safety [Fournet et al., 2011]) If ∅ ` A : t, then A is safe.

Perfect secrecy is specified as probabilistic equivalence: two expressions A0 and A1 are
equivalent, written A0 ≈ A1, when they return the same distribution of values. We use abstract
types to automatically verify secrecy, as follows. Suppose a program is written so that all oper-
ations on secrets are performed in a pure (side-effect free) module P that exports a restrictive
interface Iα with an abstract type α for secrets (concretely implemented by, say, a boolean). By
typing, the rest of the program can still be passed secrets, and pass them back to P , but cannot
directly access their representation. For instance, the rest of the program can never branch on a
secret value. With suitable restrictions on Iα, the result of the program then does not depend on
secrets and their operations:

Theorem 2 (Secrecy by Typing [Fournet et al., 2011]) If ∅ ` Pb ; Iα for b = 0, 1 and
Iα ` A : bool, then P0 ·A ≈ P1 ·A.

Intuitively, the program A interacts with different secrets, kept within P0 or P1, but it cannot
distinguish between the two.

Theorem 2 generalizes from single types α to families of indexed types, intuitively with a
separate abstract type at every index. The formal details are beyond the scope of this paper; we
refer to Swamy et al. [2011] for a similar development.

In Theorems 1 and 2, the module A may be composed of libraries for cryptographic prim-
itives and networking, protocol modules, and the adversary. This adversary can be treated as
an untrusted ‘main’ module, simply typed in F#, without any refinement or abstract type. In
contrast, the internal composition and verification of the other modules of the program can rely
on and are in fact driven by typed F7 interfaces.
Asymptotic Safety and Secrecy To model computational security for cryptographic code,
[Fournet et al., 2011] also defines asymptotic notions of safety and secrecy for expressions
Aη parameterized by a security parameter η, which is treated as a symbolic integer constant
and is often kept implicit, writing A instead of (Aη)η≥0. Asymptotic safety states that the prob-
ability of an assertion failing in Aη is negligible. The corresponding secrecy notion is stated
in terms of asymptotic equivalence: two closed boolean expressions A0 and A1 (implicitly in-
dexed by η) are asymptotically equivalent, written A0 ≈ε A1, when the statistical distance
1
2

∑
M=true,false |Pr[A0 ⇓ M] − Pr[A1 ⇓ M]| is negligible. A trace property of a protocol C

can be expressed as the asymptotic safety of the composition C · A of the protocol with any
p.p.t. adversary A. These asymptotic notions apply only to modules that meet polynomial
restrictions, so that all closed programs resulting from their composition always terminate in
polynomial time. (See Küsters et al. [2012] for a detailed discussion of polynomial-time no-
tions for code-based simulation-based security.)

3.1 Games, Ideal Functionalities, and Typed Interfaces.
We now explain how to use F7 typing to model cryptographic primitives and protocols, using
authenticated encryption (AE) as a running example—see §4 and §6 for its TLS elaborations.
Let C be a module that implements a cryptographic functionality or protocol. We may define
security for C in three different styles: using games, ideal functionalities, or ideal interfaces. In
this section, we assume that C is keyed, but our approach also applies to more complex, stateful
functionalities. To begin with, we suppose that C manages a single key internally and does not
allow for key compromise.

We define an interface IC with two functions for encryption and decryption, for now assum-
ing that plaintexts and ciphers are fixed-sized byte arrays. The key is kept implicit, so encryption

12

takes a plaintext and returns a cipher; Conversely, decryption takes a cipher and returns a plain-
text option, that is, either some plaintext or none, in case of decryption error.
type cipher = bytes
val ENC: p:plain→ c:cipher
val DEC: c:cipher→ o:plain option

Games Games provide oracle access to C; this may be programmed as a module G with an in-
terface IG that exports oracle functions. Games come in two flavors: (1) Games with a winning
condition, which can be expressed by the adversary breaking a safety assertion, (2) Left-or-right
games, in which the adversary has to guess which of the two variants G0 or G1 of the game it is
interacting with. In our framework these two variants are defined as follows:

Definition 1 (1) C is G-game-secure if for all p.p.t. expressions A with no assume or assert
such that IG ` A : unit, the expression C ·G ·A is asymptotically safe. (2) C is (G0, G1)-game-
secure if for all p.p.t. expressions A with IG ` A : bool, we have C ·G0 ·A ≈ε C ·G1 ·A.

Typical games for modeling the authenticity and confidentiality of AE are INT-CTXT and
IND-CPA. The former requires that the adversary forge a valid ciphertext; the latter requires
that an adversary that freely chooses (x0, x1) cannot distinguish between encryptions of x0
and encryptions of x1. In our formalism these game-based security properties are expressed
as GCTXT-game-security and (G0, G1)-game-security, using the following games coded in F#
(b ∈ {0, 1}) :

GCTXT
4
=

let log = ref []
let enc p =

let c=ENC p in
log := c::!log; c

let dec c = match DEC c with
| None→None
| Some(x)→

assert(List.mem c !log);Some(x)

Gb
4
= let enc x0 x1= ENC xb.

For GCTXT the interface IG exports enc and dec (but not log). For G0 and G1 it exports only
enc. (See Fournet et al. [2011] for further examples of games coded in F#.)
Ideal Functionalities with Simulators An ideal functionality F for C implements the same
interface IC but provides nicer properties. F only needs to implement C partially; the rest of
the implementation that is not security critical may be provided by a simulator S, which is only
required to exist.

Definition 2 C is F -functionality-secure if there is a simulator S such that, for all p.p.t. ex-
pressions A with I i

C ` A, we have C ·A ≈ε S · F ·A.

In the spirit of conditional reactive simulatability [Backes et al., 2008], we may specify
conditional emulation, by demanding that A be well typed with respect to an ideal interface I i

C

annotated with pre-conditions. This allows us, e.g., to give an ideal functionality for CPA secure
encryption.

For primitives such as AE, we may design F so thatC itself is a valid simulator, i.e. C ·A ≈ε
C · F ·A. We refer to this as self-simulation.

Definition 3 C is F -functionality-secure in self-simulation if for all p.p.t. expressions A with
I i
C ` A we have C ·A ≈ε C · F ·A.

Intuitively, emulating such a functionality corresponds to being secure with respect to a left-or-
right game, in which the left game just does forwarding and the right game applies the filter F .

Within our TLS implementation we define such left-right variants using a compile flag #if
ideal, as in the following example for authenticated encryption:

13

G0, G1
4
=

let log = ref []
let ENC (p:plain) =

#if ideal
let c = ENC zero in
log := (c,p)::!log
#else
let c = ENC p
#endif
c

let DEC c =
#if ideal
assoc c !log
#else
DEC c
#endif

G0 is the code compiled with ideal unset and G1 is the same code with ideal set.
Ideal Interfaces Instead of code, we may use types to express perfect security properties. For
AE, for instance, the ideal interface below specifies ciphertext integrity (INT-CTXT):
val ENC: p:plain→ c:cipher {ENCrypted(p,c)}
val DEC: c:cipher→ o:(plain option)

{∀p. o=Some(p)⇔ENCrypted(p,c)}
This interface is more precise than IC : ENC now has a post-condition ENCrypted(p,c) stat-

ing that its result c is an encryption of its argument p. (ENC may assume this as an event.)
Hence, the postcondition of DEC states that decryption succeeds (that is, returns Some p for
some plaintext p) only when applied to a cipher produced by ENC p.

A module is secure with respect to an ideal interface I i
C when it asymptotically implements

it, in the following sense:

Definition 4 C is I i
C-interface-secure if there exists a module C i with ` C i ; I i

C such that,
for all p.p.t. expressions A with I i

C ` A, we have C ·A ≈ε C i ·A.

For instance, one may use an ideal functionality F such that F ; I i
C . The advantage of

type-based security is that one can then automatically continue the proof on code that uses I i
C .

As indicated above, there are obvious connections between games, ideal functionalities and
ideal interfaces, and under certain conditions one can prove these definitions equivalent. When
it is clear from the context whether we talk about games, functionalities, or interfaces, we simply
write G-secure, F -secure, and I-secure. I i

C-security implies F -security if the typing properties
of I i

C is sufficient to guarantee that C i ·A ≈ε C i · F ·A.

PROOF: I i
C-security gives us C · A ≈ε C i · A. From the second premise we conclude that

C · A ≈ε C i · F · A. So C i is a valid simulator. For a proof of self-simulation, one can use
I i
C-security a second time, now with A′ = F ·A to conclude that C ·A ≈ε C · F ·A.

Secrecy using Ideal Interfaces To define confidentiality using types, we introduce concrete and
ideal interfaces for the module that defines plaintexts for encryption:

Definition 5 A plain interface IPlain is of the form
type repr = b:bytes {Length(b) =plainsize}
type plain
val repr: plain→ repr
val plain: repr→ plain

The type repr gives the representation of plaintexts, whereas the type plain is abstract, with
functions repr and plain to convert between the two. (These may be implemented as the iden-
tity function.) The ideal plain interface I i

Plain is IPlain without these two functions. Intuitively,
removing them makes the interface parametric in type plain, so that we can apply Theorem 2.
Using ideal plain interfaces, we give an interface-based definition of secrecy.

Definition 6 C is I i
Plain;I i

C-secure when there exists a module Ci with I i
Plain ` Ci ; I i

C such
that, for all p.p.t. modules P with ` P ; IiPlain, ` P ; IPlain, and A with IPlain, I

i
C ` A, we

have P · C ·A ≈ε P · Ci ·A.

14

Parametricity guarantees both plaintext secrecy and integrity (but not ciphertext integrity).
For example, a protocol using AE may define type plain = m:repr{Msg(m)} where Msg is the
protocol specification of an authentic plaintexts and then rely on typing to ensure authenticity
of decrypted plaintexts.
Equivalence of games, ideal functionalities, and ideal interfaces (illustrated for AE). For
authenticated encryption one can show that all three definitional styles—game based, function-
ality based and interface based—are equivalent. In particular, C · F has the required typing
properties. F corrects false-decryptions and encrypts zeros instead of plaintexts. This guaran-
tees that it is parametric and meets its refinement typing.

Conversely these typing properties are sufficient to guarantee that Ci · F · A ≈ Ci · A.
Parametricity guarantees equivalence for the module in which Ci is handed zeros instead of
plaintexts, and the refinement types statically ensure that F makes a correction if and only if the
same correction is made by Ci.

Moreover, F -functionality-security is equivalent to (G0, G1)-game-security where the left
game only does forwarding and the right game applies the filter F . This combined authenticated
encryption game which simultaneously models authenticity and secrecy (see, e.g., Paterson et al.
[2011]) can in turn be shown equivalent to being secure w.r.t. both the INT-CTXT and IND-CPA
games described above.

3.2 Indexes for Multi-instance, Agility, and Corruption

Multi-instance functionalities Ideal functionalities and interfaces compose in the following
intuitive sense: if the interfaces IC and IC′ are disjoint, C is I i

C-secure, and C ′ is I i
C′ -secure,

then C · C ′ is I i
C , I

i
C′ -secure, and similarly with functionalities.

Rather than a fixed number of modules, we may use a module that support multiple, dy-
namic instances, via a code transformation that adds an index value (plus e.g. a key) to every
call. (Software libraries are typically multi-instance.) For a keyed primitive, this module may
generates a key at each call to some function GEN: id:index→ (;id)k. The user provides the
index, and type safety guarantees that materials with different indexes are not mixed. Instances
may also differ, e.g. in their choice of plaintext lengths. For example, an ideal multi-instance
interface for AE is:
type (;id:index)key
val GEN: id:index→ (;id)key
val ENC: id:index→ (;id)key→ p:(;id)plain→

c:cipher {ENCrypted(id,p,c)}
val DEC: id:index→ (;id)key→ c:cipher→

o:(;id)plain option { ∀p. o = Some(p)⇔ENCrypted(id,p,c) }
This interface is parameterized by a plain module that defines an indexed abstract type (;id:index)plain,
and uses an ENCrypted predicate with an extra index argument. Some multi-instance interfaces
rely on usage restrictions that cannot be enforced by typing. We document these restrictions
as side conditions. For instance, to achieve CTXT, we would usually require that users never
generate two keys with the same index.

Definition 7 A program A is a restricted user of I i
C when I i

C ` A and A calls GEN with
pairwise distinct indexes.

As an important technicality, it is often sufficient to prove security against adversariesA that
generate a single key.

To establish a self composition result for multi-instance cryptographic primitives we con-
sider what it means for it to be secure with respect to a single session adversary which meets the
following restriction.

15

Definition 8 A program A is a single-instance user of I i
C if I i

C ` A and A generates a single
key.

The two restrictions on A give rise to the following two definitions of security.

Definition 9 A multi-instance C primitive is multi-instance (single-instance) F -secure, when,
for all p.p.t. restricted (respectively single-instance) users A with I i

C ` A there exists a simula-
tor S such that

C ·A ≈ε S · F ·A .

Single-session security implies multi-instance security under some isolation conditions on
C and F . This follows from single instance security being a sufficient condition for universal
composability [Canetti, 2001].

Theorem 3 (Multi-instance composition) If for each id, C behaves like some isolated module
Cid and for the same id, F behaves like some isolated module Fid that calls Cid, then single-
instance F -security implies multi-instance F -security.

Weak cryptographic algorithms Since indexed types keep different instances separated, we
may as well use different algorithms, as long as they meet the same interface. For example, the
index may include the name of the algorithm. Interestingly, this provides support for dealing
with weak cryptographic algorithms, that is, algorithms that do not meet their specified security
property. To this end, we introduce a predicate on indexes, Strong(id), that holds when the
algorithm is cryptographically secure, and we refine our ideal interface so that it offers security
guarantees only at strong indexes.

For AE, we have two security properties, so we introduce predicates StrongAuth for au-
thenticity and Strong for authenticated encryption. Hence, our postcondition of DEC now
is {StrongAuth(id)⇒ (∀p.o = Some(p)⇔ENCrypted(id,p,c))}We also generalize our ideal plain
interface, leaving the plain and repr functions available, but with preconditions that restrict their
usage to weak algorithms:
val plain: id:index{ not(StrongAuth(id)) } → repr→ (;id)plain
val repr: id:index{ not(Strong(id)) } → (;id)plain→ repr

Intuitively, this enables AE to forge ciphertexts (or access plaintexts) at weak indexes, re-
flecting the fact that we do not have cryptographic security for their concrete algorithms. For
programming ideal functionalities, we also introduce a specification function strong: id:index
→ b:bool{b=true⇔ Strong(id)}. For AE, for instance, the ideal functionality would encrypt

zeros and decrypt by table lookups when strong id, and use the concrete algorithms otherwise.
Of course, concrete implementations do not rely on this function.
Key compromise Cryptographic keys can be corrupted. As a further refinement of our inter-
faces, we consider two forms of key compromises: the leakage of honestly generated keys, and
adversarially chosen keys. To this end we introduce a predicate on indexes, Corrupt(id), that
holds when keys are corrupted. To provide the adversary with the possibility to compromise
keys we extend our indexed interfaces I i

C with functions
val LEAK: id:index {Corrupt(id)} → (;id)key→ bytes
val COERCE: id:index {Corrupt(id)} → bytes→ (;id)key

and we adapt our ideal interfaces to provide security guarantees conditioned by the predi-
cate not(Corrupt(id)), e.g., for AE, the postcondition of DEC becomes { not(Corrupt(id))∧
StrongAuth(id)⇒ (∀p. o = Some(p)⇔ENCrypted(id,p,c))}. We also introduce a specification
function corrupt: id:index→ b:bool{b=true⇔Corrupt(id)} for programming ideal functional-
ities.

As noted, e.g., by Backes and Pfitzmann [2004], Küsters and Tuengerthal [2009], an ideal-
ized module Ci that first encrypts a message and then leaks a key cannot be both indistinguish-
able from a real encryption scheme C and parametric in the message. Given a ciphertext that is

16

independent of the message, efficient encryption schemes simply do not add enough ciphertext
entropy to allow the simulation of adaptive corruptions. Schemes based on interaction, keys of
the size of the message, and random oracles are the notable exception [Nielsen, 2002]. To avoid
the commitment problem, we require Corrupt and corrupt to be monotonic, and fixed after the
first encryption of a secret message.

In our TLS formal development, indexes are similar, but they keep track of more detailed
information, for instance about the ciphersuite and certificates used in the handshake to gen-
erate the keys. In §4, we will use two main predicate on indexes, Safe that guarantees both
authenticity and secrecy for the transport layer, and Auth that guarantees authenticity but not
necessarily secrecy, logically defined as Auth(id)4

= not(Corrupt(id)) ∧ StrongAuth(id) and Safe(
id)4

= not(Corrupt(id)) ∧ Strong(id). For simplicity, we do not model the independent corruption
of connections after key establishment, so the Corrupt predicate will be determined by the hand-
shake, as the negation of its Honest predicate on long-term keys.
Lemmas established by typechecking In the rest of the paper, we rely on numerous typing
lemmas, established by running F7 on the corresponding series of files—this task is automated
by the main Makefile in our source distribution.

For each typechecking entry in this Makefile, with target of the form <Module>.tc7 when
typechecking <Module> with the #ideal flag set, we refer to the resulting typing lemma by the
name of the target. Taking the example of MAC, a module that depends on the declarations of
TLSInfo and that implements message authentication, with an ideal typed interface I i

MAC that
expresses INT-CMA and a simpler typed interface Iunsafe

MAC that only enforces key abstraction,
such a lemma may be explicited stated as:

Lemma 1 (MAC.tc7) ITLSInfo ` MACi ; I i
MAC and ITLSInfo ` MAC ; Iunsafe

MAC .

and is proved by succesfully running make MAC.tc7. (The second, simpler typing judgment
follows by considering the case where Safe(id) is defined as false).

As informally explained in §2.2, the concrete typing lemmas may be used to justify ideal-
ization steps (e.g. just checking that keys are abstract), while the ideal lemmas may be used to
type larger idealized constructions. These typing lemmas can be systematically composed as
we build larger functionalities; for instance, the lemma below may be obtained as corollaries of
typing Lemmas M1.tc7 till Mn.tc7 with the appropriate chaining of interfaces.

Lemma 2 (Ideal Mi
1 ·Mi

n) I i
M0
` Mi

1 · . . . ·Mi
n ; I i

M .

4 Authenticated Encryption for TLS Streams
We briefly describe the record layer, explain the new length-hiding features of our API, then
outline our results for authenticated encryption in TLS.
Fragment; Compress; MAC; Pad; then Encrypt For each connection epoch, the transport
layer runs two independent instances of stateful authenticated encryption (StAE) for communi-
cating sequences of data fragments in both directions. The handshake creates these instances
according to the suffix of the negotiated ciphersuite (after WITH), and provides them with ad-
equate keying materials. In this section, we consider only the usual MAC-then-encrypt cipher-
suites, parameterized by a symmetric encryption algorithm (3DES, AES, or RC4) and a MAC
algorithm (e.g., HMAC with SHA1); our implementation also supports all authentication-only
ciphersuites and has a placeholder for GCM encryption.

From protocol messages down to network packets, StAE proceeds as follows: (1) the mes-
sage is split into fragments, each containing at most 214 bytes; (2) each fragment is compressed
using the method negotiated during the handshake, if any; (3) each fragment is appended with a
MAC over its content type, protocol version, sequence number, and contents; (4) when using a
block cipher, each fragment is padded, as detailed below; (5) the resulting plaintext is encrypted;

17

Figure 4: Wire size of compressed-then-encrypted TLS fragments for 10 different mp3 files.
X-axis is the fragment number for each file; Y-axis is the size, in bytes, of the compressed-
then-encrypted fragment observed on the network. The 288 bytes first fragment of each file,
fingerprinting the file type, is not plotted because it is out of range for this graph.

(6) the ciphertext is sent over TCP, with a header including the protocol version, content type,
and length.

The details of fragmentation and padding are implementation dependent, but those details
matter inasmuch as they affect cryptographic security and network traffic analysis.

4.1 Traffic Analysis and Length Hiding

Traffic Analysis and Fingerprinting Even with perfect cryptography, traffic analysis yields
much information about TLS applications [Dyer et al., 2012]. For example, compression may
reveal redundancy in the plaintext when both plaintext and ciphertext lengths are known [Kelsey,
2002]; this suffices to break any IND-CPA based notion of secrecy. More surprisingly, TLS first
fragments then compresses, hence sequences of ciphertext lengths may leak enough information
to identify large messages being transferred. Thus, we implemented a new attack showing that
an eavesdropper can uniquely identify JPG images and MP3 songs selected from a database,
simply by observing short sub-sequences of ciphertext lengths. The attack is most effective
against RC4 ciphersuites, but also succeeds against block ciphers with minimal padding.

We display in Fig. 4 the fingerprints of 10 MP3 files downloaded using Chrome from an
OpenSSL server, a client-server configuration that negotiates compression by default. Although
each file transfer involves more than 150 fragments, just 3 successive fragment lengths suffice
to uniquely identify each song. Accordingly, our implementation disables compression, and our
formal results apply only to connections where TLS-level compression is disabled.
Length Hiding. TLS is not designed to prevent traffic analysis, but it does provide countermea-
sures when using a block cipher: padding before encryption hides the actual plaintext length and,
by inserting extra padding beyond the minimal required to align to the next block boundary, one
can hide a larger range of plaintext lengths. The padding may be any of the following 256 ar-
rays [|0|], [|1; 1|], . . . , [|255;. . .; 255|] as long as the resulting plaintext is block-aligned. Most
implementations use minimal padding; others, such as GnuTLS [Mavrogiannopoulos and Josef-

18

sson, 2011], randomly select any of the correct paddings, but per-fragment padding schemes are
often statistically ineffective Dyer et al. [2012].
A Length-Hiding TLS API Our API lets applications hide the length of their messages by
indexing them with a range m..n where 0 ≤ m ≤ n. Intuitively, an observer of the encrypted
connection may learn that the plaintext fits within its range, while its actual length remains
secret.

Consider for example a website that relies on personalized cookies, containing between 100
and 500 bytes. The website may give cookies the indexed abstract type (;(100,500))data, hence
requesting that their actual length be hidden. The range (100,500) is treated as public, and
suffices to determine fragmentation and padding. If the connection uses a block cipher, say
AES 128 CBC SHA, then any value of this type can be uniformly split, MACed, encoded, and
encrypted into two fragments of 36 blocks each.

Our implementation follows a simple fragmentation and padding algorithm: given a range
m..n, we compute first the minimal number of fragments needed to include up to n −m bytes
of additional padding, then the maximal length p of the first fragment. Then, unless p = n, we
use let (f,rest)= DataStream.split 1 p (m−1) (n−p) text then send the fragment f and iterate on
rest. The actual sizes of text, f, rest, and the padding added to obtain an encoded fragment of
size p remain provably secret (thanks to type abstraction) and do not influence the size of the
fragment on the wire. Any implementation of the split function in DataStream must satisfy the
following interface:
val concat: m0:nat→ n0:nat { m0 <= n0 } →

m1:nat→ n1:nat { m1 <= n1 } →
b0: (m0,n0) data→ b1: (m1,n1) data→
b:(m0+m1, n0+n1) data { b0 @| b1 = b }

val split: m0:nat→ n0:nat { m0 ≤ n0 } →
m1:nat→ n1:nat { m1 ≤ n1 } → b:(;m0+m1, n0+n1) data→
b0: (;m0,n0) data ∗ b1: (;m1,n1) data { b0 @| b1 = b }

where @| is byte array concatenation.
On the receiving end of a connection, the same length-hiding specification applies: as in-

coming TCP packets are processed, the application is notified of the arrival of “some” bytes,
with a public range size that depends only on the ciphersuite and the size of those wire packets.
Continuing with our example, the receiver would get two data chunks, each with a size range of
0..250.

Applications built on top of this LH mechanism are responsible for specifying sensible
ranges and thus control the shape of the network conversation. (They can still trivially leak
the plaintext length, for instance by emitting a separate network event for every sent or received
byte.) How to program secure applications on top of our API that do not leak privacy sensitive
length-information is an interesting question outside the scope of this paper.

4.2 Authenticated Encryption Schemes
We present the two modules that implement multi-instance authenticated encryption for TLS
fragments: first LHAE, featuring indexes, ranges, and additional data (AD) to be authenticated
with the plaintext; then StAE, implementing stateful encryption on top of LHAE and organizing
fragments into streams.
Length-Hiding Authenticated Encryption (LHAE) We define IiLHAEPlain ;I i

LHAE security for the
plaintext interface IiLHAEPlain outlined below.
type (;id:index,ad:(;id)data,r:range) plain
type (;r:range) rbytes = b:bytes{ fst(r) ≤ Length(b) ≤ snd(r) }
val plain: id:index{not(Auth(id))} →

r:range→ ad:(;id)data→ (;r)rbytes→ (;id,ad,r) plain
val repr: id:index{not(Safe(id))} →

19

r:range→ ad:(;id)data→ (;id,ad,r) plain→ (;r)rbytes

Each plaintext is indexed by an instance id, its additional data ad, and its range r. We use the
refined type (;r)rbytes for concrete representation of plaintexts that fit in range r. The functions
plain and repr translate between concrete and abstract plaintexts. As explained in §3, their
precondition states that LHAE can use them only on weak ids (e.g. for weak ciphersuites or
corrupt keys).

We define the interface I i
LHAE parametrized by IiLHAEPlain; we omit its COERCE and LEAK

functions for brevity.
type (;id:index) key
val GEN: id:index→ (;id) key
val ENC: id:index→ k:(;id) key→ d:(;id) data→ r:range→

p:(;id,d,r) plain→ (k’:(;id)key ∗ c:cipher)
{CipherRange(id,r,c) ∧ENCrypted(id,d,p,c)}

val DEC: id:index→ k:(;id) key→ d:(;id) data→ c:cipher→
o:(k’:(;id) key ∗ r :range {CipherRange(id,r,c)} ∗

p :(;id,d,r) plain) option
{Auth(id)⇒ !k’,r,p, (o = Some(k’,r,p)⇔ENCrypted(id,d,p,c))}

The index id determines the algorithms to use. Keys for a particular index are created by calling
GEN; they encapsulate the full encryption state, typically an encryption key, a MAC key, and
(when necessary) an IV or stream cipher state.

Encryption ENC takes a plaintext, executes the MAC-Encode-Encrypt sequence, and returns
a cipher and (potentially) updated key. Decryption DEC takes a cipher, decrypts, decodes, and
verifies the MAC; if every check succeeds, it returns a plaintext and updated key; otherwise it
returns an error. Their logical specification is explained below.

CipherRange(id,r,c) is a predicate asserting that the length of ciphertext c reveals at most that
the length of the plaintext is in the range r. The secret length of the plaintext is authenticated,
but its range at encryption is not: the range at decryption may be wider (unless id prescribes a
stream cipher and all three lengths coincide).

ENCrypted(id,d,p,c) is an abstract predicate specified as the postcondition of encryption,
stating that c is an authenticated encryption of p with additional data d. Its appearance also as a
postcondition of decryption expresses ciphertext integrity: only correctly-generated ciphertexts
successfully decrypt.

Authenticity and confidentiality of plaintexts follow from parametricity for values of the
(;id,d,r)plain type when the predicates Auth(id) and Safe(id) hold. For instance, when Safe(id)
holds, the user (including the adversary) may learn the values of their indexes id, d, r, but cannot
call the repr function to read their content, nor call the plain function to forge their content.

Our implementation supports many protocol versions and ciphersuites, but provides security
only for Strong indexes that use TLS 1.2 with secure ciphersuites, e.g. AES_CBC with fresh
IVs. Our formal development mirrors a well known result of Krawczyk [2001, Theorem 2]
that states that IND-CPA security of encryption and combined INT-CTXT security of MAC-
then-encrypt afford secure channels. Krawczyk also shows that stream ciphers as used in TLS
provide combined INT-CTXT security. We use the result of Paterson et al. [2011] to show that
the block-cipher-based schemes implemented by our LHAE module are combined INT-CTXT
secure, despite the unauthenticated padding, for strong block ciphers and MAC algorithms.

Our concrete implementation of LHAE is a sequence of modules C 4
= MAC · Encode · ENC

· LHAE. Under the combined INT-CTXT assumption, we prove by typing that C is I i
LHAEPlain;

I i
LHAE-secure for IND-CPA secure modules ENC and for restricted users (using LHAE keys

linearly with pairwise-distinct additional data). This is expressed by the following lemma which
leads up to our proof for stateful length-hiding authenticated encryption.

We let LHAEF be the variant of LHAE that filters out ciphertexts that were not logged during
encryption (see File LHAE.fs with flag #ideal F and its typing in Lemma LHAE F.tc7); and let
LHAEi be the variant that always decrypts using table lookup and fails otherwise (File LHAE

20

with flag #ideal).

Lemma 3 (Length-hiding AE) Let ILHAEPlain and I i
LHAEPlain be the concrete and ideal plain in-

terfaces for LHAE, respectively. Let I i
LHAE be the ideal LHAE interface. Let C = MAC ·

Encode ·ENC · LHAE. If P ·C ·A ≈ε P ·MAC ·Encode ·ENC · LHAEF ·A for restricted users,
MAC is I i

MAC-secure, and ENC is I i
Encode;IiENC-secure, then C is I i

LHAEPlain ;I i
LHAE-secure

for restricted users.

In the lemma, the equation P ·C ·A ≈ε P ·MAC · Encode · ENC · LHAEF ·A captures the
combined INT-CTXT assumption on LHAE proved by Krawczyk [2001] for stream ciphers and
by Paterson et al. [2011] for length-hiding CBC-mode encryption.

Internally, we also decompose MAC into a core MAC′ module and individual non-agile
modules for each strong MAC algorithm, e.g., MAC SHA1 and MAC SHA256. This allows to
prove that MAC is I i

MAC-secure based on classical INT-CMA assumptions on these modules.

PROOF OUTLINE The proof proceeds as follows, each step mostly relying on automated
typechecking.

P · C ·A 4
= P ·MAC · Encode · ENC · LHAE · A (1)

≈ε P ·MAC · Encode · ENC · LHAEF · A (2)

≈ P ·MAC · Encode · ENC · LHAEi · A (3)

≈ε P ·MAC · Encode · ENCi · LHAEi · A (4)

≈ P ·MAC · Encodei · ENCi · LHAEi · A (5)

≈ P ·MACi · Encodei · ENCi · LHAEi · A (6)

where P ranges over all p.p.t. modules with ` P ; IiLHAEPlain, ` P ; ILHAEPlain, and A ranges
over all p.p.t. modules with ILHAEPlain, I

i
LHAE ` A.

Step (1) is by definition. Step (2) applies the joint INT-CTXT computational assumption
on C; it requires no specific typing, since the keys of LHAE are treated abstractly (at safe
indexes) in its exported interface. Step (3) relies on the (typed) functional correctness of ENC
and Encode, which implies that logged ciphertexts always decrypt to their original plantext

(Lemma LHAE F.tc7). Step (4) applies IND-CPA security for ENC (see ENC.fs with flag #
ideal and the ideal interface ENC.fs7). It demands that the keys of ENC be treated abstractly
and that only logged ciphertexts are ever decrypted—this is enforced by typechecking LHAEi

(which does not decrypt anymore at safe indexes) against ENC.fs7. Step (5) is by parametricity
(Theorem 2) for the types defined by Encode, after typechecking that ENCi · LHAEi · A never
accesses their representations at safe indexes. Encodei is idealized to only encode strings of
zeros. Step (6) applies INT-CMA security for MAC (see MAC.fs with flag #ideal and the ideal
interface MAC.fs7). We obtain that C is I i

LHAEPlain ; I i
LHAE-secure by showing that the the

combined C i = MACi · Encodei · ENCi · LHAEi is such that I i
LHAEPlain ` Ci ; I i

LHAE, which
follows from the automated typechecking of MACi, Encodei, ENCi, and LHAEi (lemmas MAC
.tc7, Encode.tc7, ENC.tc7, and LHAE.tc7). 2

Stateful Length-hiding Authenticated Encryption (StAE) Programmed and verified on top of
LHAE, StAE authenticates the position of each plaintext within a stream of messages. To this
end, its ideal plaintext interface I i

StPlain introduces a fourth index: a log that records the se-
quence of preceding plaintexts and additional data. Hence, in a sequence of stateful plaintexts,
the first is indexed by the empty log, the second by a log containing the first plaintext, and so
on.
type (;id:index, l:(;id) log, ad:(;id) data, r:range) stplain

We omit its plain and repr declarations similar to those of I i
LHAE. The ideal interface I i

StAE for
StAE is as follows:

21

val GEN: id:index→
w:(;id) writer {Log(w) = []} ∗ r:(;id) reader {Log(r) = []}

val ENC: id:index→wr:(;id) writer→ d:(;id) data→ r:range→
p:(;id,Log(wr),d,r) stplain→ c:cipher ∗ wr’:(;id) writer
{Log(wr’) = (d,p)::Log(wr) ∧ENCrypted(id,wr,d,p,c)
∧CipherRange(id,r,c)}

val DEC: id:index→ rd:(;id) reader→ d:(;id) data→ c: cipher→
o:(r:range {CipherRange(id,r,c)} ∗ p:(;id,Log(rd),d,r) stplain ∗

rd’:(;id) reader{Log(rd’) = (d,p)::Log(rd)}) option
{Auth(id)⇒ (!rd’,r,p. o = Some(rd’,r,p)⇔

(∃wr. ENCrypted(id,wr,d,p,c) ∧ Log(wr) = Log(rd)))}
It uses the same Safe and Auth predicates as LHAE.
Keys and sequence numbers for StAE are encapsulated into linear writer and reader capa-

bilities that hold the local state of the encryption and (for specification purposes only) the log
of messages written or read so far. Encryption adds a log entry into the writer, containing the
plaintext and its additional data. If a sequence of plaintexts was encrypted using StAE, then de-
cryption guarantees that the returned plaintexts arrive in the right order (unless not(Auth(id))),
since each plaintext must be indexed by the preceding log.

In particular, we define an embedding of StAE plaintexts into LHAE plaintexts.
val toLHAEPlain: id:index→ l:(;id) log→ ad:(;id) data→

r:range→ (;id,l,ad,r) stplain→ (;id,MakeAD(id,Length(l),ad),r) plain
val fromLHAEPlain: id:index→ l:(;id) log→ ad:(;id) data→

r:range→ (;id,MakeAD(id,Length(l),ad),r) plain→ (;id,l,ad,r) stplain

In TLS, the additional data for StAE contains the protocol version and content type; to
implement StAE on top of LHAE, makeAD (and its specification function MakeAD) adds an
8-byte prefix representing the sequence number to form the additional data for LHAE. To pro-
gram StAE using LHAE, we first write an LHAEPlain module that implements I i

LHAEPlain

using I i
StPlain . Then, for instance, StAE.ENC simply adds a sequence number then invokes

LHAE.ENC.
(* StLHAE *)

let ENC id wr data rg plain =
let text = toLHAEPlain id wr.log data plain
let seqn = List.length wr.log
let data’ = makeAD id seqn data
let key’,cipher = LHAE.ENC id wr.key data’ rg text
let log’ = addToLog id wr.log data rg text
({key=key’;log=log’},cipher)

let DEC id rd data cipher =
let seqn = List.length rd.log
let data’ = makeAD id seqn data
match LHAE.DEC id r.key data’ cipher with
| Correct(key’,rg,text)→

let plain = fromLHAEPlain id rd.log data rg text
let log’ = addToLog id rd.log data rg text
Correct({key=key’; log = log’}, rg, plain)

| Error(x,y)→Error(x,y)

This code casts I i
StPLAIN to I i

LHAEPlain, computes the sequence number as the current length of
the log, creates a new additional data, calls LHAE.ENC, updates the key and log and returns.
Decryption performs these actions in the reverse order, raising an Error if LHAE decryption
fails. By typing (Lemma StAE.tc7), we show that our StAE code meets its ideal interface, as-
suming restricted users (using readers and writers linearly) and given that LHAE meets its ideal
interface.

22

Theorem 4 (Stateful AE) Let IiLHAEPlain and I i
LHAE be the ideal plain interface and ideal inter-

face of LHAE. Let IiStPlain and I i
StAE be the ideal plain interface and ideal interface of StAE.

Let C = MAC · Encode · ENC · LHAE and S = LHAEPlain · C · StAE.
If C is I i

LHAEPlain ;I i
LHAE-secure for restricted users, then S is I i

StPlain ;I i
StAE-secure for

restricted users.

PROOF: The proof is mostly by typing; we still need to check that StAE satisfies the usafe
restriction of LHAE by inspecting its code. The proof proceeds as follows:

P · S ·A 4
=P · LHAEPlain · C · StAE ·A (7)

≈εP · LHAEPlain · Ci · StAE ·A (8)

where P ranges over all p.p.t. modules with ` P ; IiStPlain , ` P ; IStPlain , and A ranges
over p.p.t. modules such that IStPlain , I

i
StAE ` A. We conclude that S is I i

StPlain ;I i
StAE-secure

by typing the combined Si = LHAEPlain · Ci · StAE as I i
StPlain ` Si ; I i

StAE, which follows
from the typing assumption on Ci and the automated typechecking lemmas LHAEPlain.tc7 and
StAE.tc7. 2

4.3 Related Work on Authenticated Encryption
Provable security cast doubt at the security of early authenticated encryptions [An and Bellare,
2001, Bellare and Namprempre, 2008] and proposed provably-secure modes [Rogaway et al.,
2003, McGrew and Viega, 2004, Kohno et al., 2004, Bellare et al., 2004b]. Others looked
specifically at the authenticated encryption techniques used by SSH [Bellare et al., 2004a, 2002],
or IPSEC [Degabriele and Paterson, 2010]. Krawczyk [2001], Paterson et al. [2011] look at
the MAC then encode and encrypt (MEE) authenticated encryption mode used by TLS. The
latter [Paterson et al., 2011] considers the case of length-hiding encryption. Like Jager et al.
[2012] we build on the work of Paterson et al. [2011] but, in addition, we establish the security
of the stateful encryption of TLS based on length-hiding AEAD. Besides, our result applies to
an implementation, not just a model.

Authenticated encryption has been studied in the context of simulation-based security [Küsters
and Tuengerthal, 2009]. Küsters and Tuengerthal [2011b] provide a large cryptographic library
amenable to the verification of realistic protocols. Maurer and Tackmann [2010] look at MEE
in the model of constructive cryptography.

Paterson et al. [2011] provide the cryptographic result closest to the TLS record protocol;
in particular they also explicitly address the relative lengths, alignments, and encoding of the
plaintexts and MACs. They report an attack when using short MACs, which we independently
discovered as part of this project. They give a concrete bound on MAC, Encode, then Encrypt
(MEE) using CBC. On the other hand, their model does not consider the integration of LHAE
within TLS.

Hence, we obtain security for TLS Record streams, under the cryptographic assumptions
discussed for LHAE.

5 The Handshake Protocol
This section discusses the ‘control’ part of our TLS API for managing sessions and connec-
tions. Our implementation delegates these tasks to a component that entirely hides the Hand-
shake protocol from the rest of our code. We verify it against a typed interface I i

HS that specifies
key-establishment, and we independently verify the rest of TLS for any key-establishment func-
tionality that implements I i

HS . We discuss the main features of the Handshake, but we refer to

23

the online materials for its 750-line F7 specification and the details of the underlying crypto-
graphic assumptions in its auxiliary modules (see the typed interfaces Sig.fs7, RSA.fs7, DH.fs7,
CRE.fs7, PRF.fs7 and their implementations with flag #ideal) .
Ciphersuites The Handshake protocol depends on both the TLS version and the prefix of the
ciphersuite (before WITH). It has two main mechanisms for establishing a shared pre-master
secret (PMS): (1) the client samples a fresh value and encrypts it using the server public key;
or (2) the client and server exchange Diffie-Hellman exponentials gx, gy and use their private
exponents x and y to compute the value gxy . The Diffie-Hellman exponentials can be either
static, meaning that for authenticated ciphersuites they have to be included in certificates, or
ephemeral, meaning that they need to be signed with certified keys.
Data Structures We give below the public datatypes of the API that expose information about
sessions and epochs to the application. (These types are defined in TLSInfo.fs.) Our main
integrity goal for the handshake is that clients and servers agree on their content.

type SessionInfo = {
init crand: random;
init srand: random
version: version;
cipherSuite: cipherSuite;
compression: compression;
pms data: bytes;
clientID: cert list;
serverID: cert list;
sessionID: sessionID}

type Role = Client | Server
type ConnectionInfo = {

role: Role; id rand: random;
id in: epoch;
id out: epoch}

type epoch =
| Init of Role
| Next of random ∗ random

∗ SessionInfo
∗ epoch

SessionInfo records information for a given session: the initial client and server random values
(used in the full handshake that generated the session); the protocol version, ciphersuite, and
compression algorithm; the exchanged data for the PMS; the certificates used for authenticating
each role, if any; and the session identifier (used for resumption). ConnectionInfo holds the
current epochs, for reading and writing, the local role, and the local random value, to guarantee
that ConnectionInfos are pairwise distinct. (The role field can be computed as a function from
the writing epoch, and is duplicated in ConnectionInfo for ease of access.) Each epoch is uni-
directional and initially records just the role of the writer (Client or Server); for each complete
handshake, it also records the SessionInfo and client and server randoms used for key derivation.

5.1 The Handshake Interface
The handshake interface is divided into three parts: the long-term key interface and the control
interface for modeling the creation of honest and corrupted keys and initiating and controlling
runs of the handshake respectively are both outlined in Fig. 5; the network interface for driving
the progress of the handshake and for receiving keys and notifications is outlined in Fig. 6.
Long-term Key Interface The handshake makes use of long-term keys, which may be either
honestly generated and used, or compromised. The certification of long-term keys is outside
the TLS standard, but is crucial for modeling its security. For this reason, we implement basic
certificate management in the Cert module, but we leave the interpretation of certificates to the
TLS application. From the protocol viewpoint, we only require a function (certkey) to extract
public keys from exchanged certificate chains, and a predicate (Honest) to specify which of the
long-term keys used by TLS are honest.
Control Interface We now outline the handshake interface. There is one instance of the Hand-
shake protocol at each TCP connection, each able to perform a sequence of handshakes for that
connection. At each end of the connection, the local state has an abstract type (;ci)state indexed
by the current connectionInfo ci. We require that connection states be treated linearly: each call
to the interface takes the current state and returns the next state.

24

(∗ Long−term key Interface ∗)
predicate val Honest: pk→ bool
val create: template→ (pk:pk {Honest(pk)}) option
val coerce: template→ bytes→ pk option
function val CertKey: certs→ pk option
val certkey: c:certs→ o:pk option {o = CertKey(c)}

(∗ Control Interface ∗)
predicate Authorize of Role ∗ SessionInfo
type ConnectionInfo = CI
private type (;ci:CI) state
function val Config: ci:CI ∗ s:(;ci)state→ config
val init: rl:Role→ c:config→ (ci:CI ∗ s:(;ci)state){Config(ci,s) = c ...}
val resume: nextSID:sessionID→ c:config→ (ci:CI ∗ s:(;ci)state){ Config(ci,s) = c ...}
val rehandshake: ci:CI→ s:(;ci)state→ c:config→ (b:bool ∗ s’:(;ci)state){...}
val rekey: ci:CI→ s:(;ci)state→ c:config→ b:bool ∗ s’:(;ci)state{...}
val request: ci:CI→ s:(;ci)state→ c:config→ b:bool ∗ s’:(;ci)state{...}
val authorize: r:Role→ si:SessionInfo→ unit {Authorize(r,si)}

Figure 5: Ideal Handshake interface (Key and Control interface excerpt).

The interface first provides functions to create new instances of the protocol, as client or
server, possibly resuming existing sessions, and to initiate re-handshakes on established con-
nections :

• init creates a client instance (with a fresh session) or a server instance (possibly resuming
an existing session, at the client’s initiative);2

• resume creates a client instance from some existing session. For all of these functions, an
event Config(ci,c) records the configuration chosen by the user.

• With request the server asks the client to start a renegotiation;

• rehandshake or rekey let the client start a renegotiation, using a full or abbreviated hand-
shake (with the same ciphersuite).

Network Interface Once configured and started, the handshake progresses by sending and
receiving fragments of content types Handshake and CCS. Calls to next fragment may yield an
outgoing fragment to be sent using the current record, if any; conversely, calls to recv fragment
and recv ccs process incoming fragments. In response to these calls, the handshake updates its
internal state and notifies progress gradually, first by delivering the new index and cryptographic
materials, independently for each direction (using event SentCCS(id) for each epoch) then, after
both (1) accepting the correct Finished message from its peer and (2) sending its own Finished
message, by confirming that the handshake is complete (using predicate Complete(ci,cfg) for
the full ConnectionInfo) and thus that the new keys can be used to send and receive application
data. In TLS, whether (1) or (2) above happens first depends both on the role and whether we
are resuming a prior session or not. (To support accelerated handshakes, one may even decide
to start sending data immediately after (2), and before key confirmation; This is the gist of the
false start extension proposedLangley and Moeller [2010].)

The Complete predicate in the postcondition of connection establishment states that the in-
coming and outgoing epochs in the new ConnectionInfo are synchronized, and relates their
common SessionInfo (written si for SI(ci.id out) below) to the local and remote configurations.

2This corresponds to accept and connect in the main TLS API in Fig. 13 in §6.

25

predicate val Complete: CI ∗ config→ bool
predicate EvSentFinishedFirst of CI ∗ bool
predicate val SentCCS: epoch→ bool

type (;ci:CI, hs:(;ci) state) outgoing =
| OutIdle of s’:(;ci)state
| OutSome of (rg:range ∗ f:(;ci.id out,rg)Fragment.fragment ∗ s’:(;ci)state)
| OutCCS of (rg:range ∗ f:(;ci.id out,rg)Fragment.fragment ∗

ci’:CI ∗ cs:(;ci’.id out)StatefulLHAE.state ∗ s’:(;ci’)state) { ci.write = Pred(ci’.write) ∧
ci.read = ci’.read ...}

| OutFinished of (rg:range ∗ f:(;ci.id out,rg)Fragment.fragment ∗ s’:(;ci)state) {EvSentFinishedFirst(ci,
true)}

| OutComplete of (rg:range ∗ f:(;ci.id out,rg)Fragment.fragment ∗ s’:(;ci)state) {Complete(ci,Config(ci
,hs))}

val next fragment: ci:CI→ s:(;ci)state→ (;ci,s)outgoing

type (;ci:CI,c:config)incoming =
| InAck of (;ci,c)nextState
| InVersionAgreed of (;ci,c)nextState ∗ ProtocolVersion
| InQuery of Cert.certchain ∗ advice:bool ∗ (;ci)state
| InFinished of (;ci)state {EvSentFinishedFirst(ci,false)}
| InComplete of (;ci)state {Complete(ci,c)}
| InError of alertDescription ∗ string ∗ (;ci)state

val recv fragment: ci:CI→ s:(;ci)state→ rg:range→ (;ci.id in,rg)Fragment.fragment→ (;ci,Config(ci,s)
)incoming

type (;ci:CI,c:config)incomingCCS =
| InCCSAck of ci’:CI ∗ (;ci’.id in)StatefulLHAE.state ∗ (;ci’)state {ci.write = ci’.write ∧ ci.read = Pred

(ci’.read)}
| InCCSError of alertDescription ∗ string ∗ (;ci,c)nextState

val recv ccs : ci:CI→ s:(;ci)state→ rg:range→ (;ci.id in,rg)Fragment.fragment→ (;ci,Config(ci,s))
incomingCCS

Figure 6: Ideal Handshake interface (Network interface excerpt).

Provided that (1) both the ciphersuite and all its algorithms in si are strong (predicate StrongHS
(si), explained shortly); and (2) the long-term keys recorded in si are honest (predicate Honest),
then we have that (a) the negotiated content of the session si is compatible with the two initial
configurations; (b) the peer sent a CCS with a matching epoch (event SentCCS(ci.id in)); and
(c) the handshake was actually secure (predicate SafeHS(si)), thereby enabling secure transport.

By definition, for connections with an anonymous client, the server obtains no such guar-
antees, but the connection may still provide server authentication, and then be used to run
application-level client authentication—see §6.4.
Modularity with Finished Messages (Discussion) Most modern security definitions for key
establishment require that the resulting key be indistinguishable from a fresh random key. In
contrast, TLS uses the new epoch before Handshake completion, to encrypt and decrypt the
Finished messages, and thus does not meet this requirement. To address this issue, Datta et al.
[2006] introduce a weaker notion of key usability for a given cryptographic task. The main
drawback of key usability is that it breaks modularity and must be re-established for each task.
Interestingly, our type discipline already restricts the usage of keys, so we entirely avoid the
Finished message controversy, and achieve both modularity and TLS compliance. We guarantee
indistinguishability from fresh keys only as the Handshake passes the keys to the Record layer.
These keys can be used at once to process the Finished messages, and later (after completion)
to secure application data.

26

5.2 Handshake Security and Modular Verification
We define security for the ideal handshake interface I i

HS , outlined in Fig. 5, and parameterized
by I i

StAE, the ideal interface for StAE in §4 that defines the type of keys established by the
handshake. As in §4, we demand that the users of the handshake interface use its state linearly;
this is easily checked by inspection of the code of Dispatch.fs.

Definition 10 A module HS is a secure handshake when it is I i
StAE ;I i

HS-secure for restricted
users.

The StAE keys have abstract types, so the module HS in the definition can obtain them
only by calling GEN and COERCE, and it can turn bytes into key materials using the latter
only for epochs id such that not(Auth(id)), the pre-condition of COERCE. Thus, Definition 10
entails that, whenever Auth (and a fortiori Safe) holds, a secure handshake establishes ideal,
fresh random key materials (as created by GEN).

More precisely, I i
HS uses a predicate SafeHS on SessionInfo to indicate the secure runs of

the handshake, such that Auth(id) implies SafeHS(SI(id)). To type the handshake, we let

SafeHS(si)4= StrongHS(si) ∧HonestPMS(si)

where HonestPMS(si) means that the pre master secret was securely generated between compli-
ant endpoints using honest long-term keys, and where StrongHS(si) collects our cryptographic
assumptions on the algorithms selected by the protocol version and ciphersuite indicated in
the SessionInfo si. For the handshake, these algorithms are provided by the modules Sig im-
plementing all signatures used by TLS, RSA and DH implementing the two sub-protocols for
exchanging the PMS, CRE a computational randomness extractor for deriving master secrets,
and PRF implementing pseudo-random functions for deriving keys and authenticating finish
messages.

We obtain the security of the pre-master secret exchange by making strong cryptographic
assumptions (RSA-PMS) and (DH-PMS) on the combined modules CRE·RSA and CRE·DE.
These assumptions are similar to the tagged key-encapsulation security of Jonsson and B. S. Kaliski
[2002] and the PRF-ODH assumption of Jager et al. [2012] respectively (see §5.3 for details).
Thus we define
StrongHS(si) 4

= StrongSig(si) ∧ StrongCRE(si) ∧ StrongPRF(si) ∧
(StrongRSAPMS(si) ∨ StrongDHPMS(si))

For example, if the ciphersuite of si matches TLS_DHE_DSS_WITH_*, StrongHS(si) holds
if the signature scheme DSS is INT-CMA secure [Goldwasser et al., 1988], CRE and DH are
jointly DH-PMS secure, CRE is a computationally strong randomness extractor [Fouque et al.,
2008], and PRF is a pseudo-random function, and similarly for RSA-based ciphersuites. The
theorem below states the security of our handshake implementation relative to the strength of
the algorithms it uses.

Theorem 5 (Handshake) If Nonce is I i
Nonce-secure, Sig is I i

Sig-secure, CRE is I i
PRF ; I i

CRE-
secure, PRF is I i

StAE;I i
PRF-secure, and we have

(RSA-PMS) RSAKey · CRE · RSA ≈ε RSAKey · CRE · RSAi,
(DH-PMS) DHGroup · CRE · DH ≈ε DHGroup · CRE · DHi,

then HS 4
= Nonce · Sig ·RSAKey ·Cert ·PRF ·DHGroup ·CRE ·RSA ·DH · TLSExt ·Handshake

is I i
StAE;I i

HS secure.

Intuitively, the theorem states that HS is secure provided its cryptographic building blocks
are INT-CMA, CRE, PRF, RSA-PMS, and DH-PMS secure for all strong handshake ciphersuites.

27

Proof outline To be able to complete the proof of Theorem 5 by typing, we replace each con-
crete implementations of the underlying cryptographic modules by their typed, ideal counter-
parts. The order of idealizations in our proof corresponds to the sequence of games in ordinary
security proofs. For example, consider the ciphersuites TLS_DHE_DSS_WITH_* analyzed by
Jager et al. [2012]. Compare the numbers in the modular structure of handshake in Fig.1 with
the sequence of games in the proof of their Theorem 1. Each game corresponds to the ideal-
ization of one module in our architecture. Game 1 corresponds to idealizing Nonce to avoid
collisions; (Games 2 and 4 capture losses in the reduction due to the lack of multi-instance
secure cryptographic primitives.) Game 3 to idealizing Sig to guarantee that the attacker can-
not replace ephemeral Diffie-Hellman exponentials1; Game 5 to idealizing DH to seed CRE
with randomness unknown to the attacker and to idealizing CRE to output truly random master
secrets; Game 6 and Game 7 correspond to idealizing PRF to generate both random keys and
ideal authentication of all handshake messages. Note that PRF can be a standard pseudo-random
function, whereas module CRE needs to be a computational randomness extractor [Fouque et al.,
2008] as it is seeded with an exponential. The proof of Jager et al. [2012] only considers a partic-
ular ciphersuite in isolation and only for the initial handshake; the proof for our implementation
requires more work to handle full and abbreviated handshakes and re-handshakes with different
key exchange methods, and thus heavily relies on automation, e.g., because of the potential for
cross-protocol attacks [Mavrogiannopoulos et al., 2012].

Let S abbreviate our implementation of StAE from § 4 and let A ranges over all p.p.t.
adversaries that meet the interface of StAE and HS. Following the game sequence above, we
have the following equations, where each step is justified by a cryptographic assumption (or a
reordering of independent modules) and typechecking.

S·Nonce·Sig·RSAKey·Cert·PRF·DHGroup·CRE·RSA·DH·TLSExt·Handshake·A (9)

≈ε S·Noncei ·Sig·RSAKey·Cert·PRF·DHGroup·CRE·RSA·DH·TLSExt·Handshake·A (10)

≈ε S·Noncei ·Sigi ·RSAKey·Cert·PRF·DHGroup·CRE·RSA·DH·TLSExt·Handshake·A (11)

≈ S·Noncei ·Sigi ·PRF·DHGroup·RSAKey·CRE·RSA·DH·Cert·TLSExt·Handshake·A (12)

≈ε S·Noncei ·Sigi ·PRF·DHGroup·RSAKey·CRE·RSAi ·DH·Cert·TLSExt·Handshake·A (13)

≈ S·Noncei ·Sigi ·PRF·RSAKey·Cert·DHGroup·CRE·DH·RSAi ·TLSExt·Handshake·A (14)

≈ε S·Noncei ·Sigi ·PRF·RSAKey·Cert·DHGroup·CRE·DHi ·RSAi ·TLSExt·Handshake·A (15)

≈ε S·Noncei ·Sigi ·PRF·RSAKey·Cert·DHGroup·CREi ·DHi ·RSAi ·TLSExt·Handshake·A (16)

≈ε S·Noncei ·Sigi ·PRFi ·RSAKey·Cert·DHGroup·CREi ·DHi ·RSAi ·TLSExt·Handshake·A (17)

After idealization, we apply typing Lemmas to verify by typing that the idealized handshake
meets I i

HS. The Handshake module itself, the largest and most complex in our codebase, imple-
ments the handshake internal state machine, but does not implement cryptography. It is verified
by typing using the ideal interfaces of the cryptographic modules (Lemma Handshake.tc7). For
this task, we carefully specify the content of the message log eventually verified in the Finished
messages, and we rely on the safe renegotiation extension to provide authentication of the whole
chain of epochs extended by each successive handshake on the connection.

5.3 Key distribution for TLS master secrets
Next, we investigate the RSA-PMS and DH-PMS assumptions in more detail. Consider the key
distribution mechanisms invoked by the TLS handshake for establishing TLS master secrets. As
part of the key distribution, the master secret is generated by a computational randomness ex-
tractor (implemented in our CRE module) from pre-master secrets that are either communicated
using RSA encryption or established by a Diffie-Hellman protocol. The corresponding modules

28

Figure 7: Pre- and mastersecret generation

are RSAKey, RSA for RSA and DHGroup, DH for Ephemeral Diffie Hellman. For simplicity, we
do not currently support static Diffie Hellman ciphersuites, which are not used much in practice.

The master-secret distribution component of the handshake composes these modules to-
gether with the CRE module. In this section we refer to this subfunctionality of Handshake
as the master secret module MS. The cryptographic context A (often called environment in
simulation-based security) of MS consists of the remaining handshake, the rest of TLS and, as
usual, potential applications and their adversaries. This module composition is of the form

RSAKey · DHGroup · CRE · RSA · DH ·MS · A

with the dependency graph depicted in Fig. 7.
The module MS relies on the following declarations exported by the interface of RSAKey ·

DHGroup · CRE · RSA · DH:
(∗CRE∗)
open DHGroup
open TLSInfo
type rsapms
type dhpms
val genRSA: pk:RSAKeys.pk→ pv:ProtocolVersion→ (;pk,pv) rsapms
val coerceRSA: pk:RSAKeys.pk→ pv:ProtocolVersion→ bytes→ (;pk,pv)rsapms
val genDH: p:p→ g:(;p)g→ gx:(;p)elt→ gy:(;p)elt→ (;p,g,gx,gy) dhpms
val extractRSA: SessionInfo→ProtocolVersion→ rsapms→masterSecret
val extractDH: SessionInfo→ dhpms→masterSecret

(∗RSA∗)
val encrypt: RSAKeys.pk→ProtocolVersion→CRE.rsapms→ bytes
val decrypt: RSAKeys.sk→ProtocolVersion→ bool→ bytes→CRE.rsapms

(∗ DH∗)
type pp = p∗g
type spp = pp:pp { StrongPP(pp) }
type (;p:p,g:g,gx:elt) secret
val genPP : unit→ spp
val defaultPP : unit→ spp
val genKey: pp→ elt ∗ secret
val exp: p:p→ g:(;p)g→ gx:(;p) elt→ gy:(;p) elt→ x:(;p,g,gx) secret→ (;p,g,gx,gy) CRE.dhpms

The types RSAKey.sk, DHE.rsapms, DHE.dhpms, and DH.secret are abstract. The type
RSAKeys.pk is bytes, but if not(Honest(pk)), then encrypt and decrypt operate only on corrupted
rsapms. Similarly, the type pp is public, but if not(StrongPP(pp)), genKey and genDH produce

29

let sk, pk = RSAKeys.keyGen()
let genRSA encrypt extract si pv =

let CrSr = si.init crand, si.init srand
if mem CrSr !log CrSr enc then None
else

log CrSr enc:= CrSr::!log CrSr enc
let pms = CRE.genRSA pk pv
#if ideal
let fake = CRE.genRSA pk pv
log := (fake,pms)::!log
let c = encrypt pk pv fake
#else
let c = encrypt pk pv pms
#endif
let ms=extractRSA si pv pms
Some (c,ms)

let decrypt extract si pv c=
let CrSr = si.init crand, si.init srand
if mem CrSr !log CrSr dec then None
else

log CrSr dec:= (Cr,Sr)::!log CrSr dec
let pms = decrypt sk pv true c
#if ideal
let pms =

match assoc el !log with
| Some(ideal pms)→ ideal pms
| None→ pms

#endif
Some (extractRSA si pv pms)

Figure 8: The code for RSAGame0 and RSAGame1; the latter is obtained by setting the ideal
flag. The interface IRSAGame grants the adversary access to the value pk as well as the two oracle
functions genRSA encrypt extract and decrypt extract.

corrupted secret and dhpms values. The SessionInfo values passed to extractRSA and extractDH
are public, but required to contain unique client and server randoms for each pre-master secret.

We do not describe the MS implementation in detail, but instead consider a large class of
possible MS implementations that respect these constraints. The ultimate security property of
master key distribution is the establishment of master secrets that are indistinguishable from
random values, even given the adversaries possibility to query all functions in the interface
subject to the parametricity and uniqueness constraints described above. As an intermediate
security goal, i.e., as a proof step, we show that rsapms and dhpms are treated abstractly by an
idealized version of these modules.
The RSA-PMS assumption For RSA key transport to provide security directly requires chosen
ciphertext attack secure encryption or key encapsulation. This is however wishful thinking, as
PKCS#1 v1.5 simply is not secure against chosen ciphertext attacks. Instead, we rely on a
joint cryptographic assumption about the combined modules RSA · CRE stating that our real
RSA module which implements the Bleichenbacher countermeasures can be replaced with an
ideal RSA module that encrypts a fake rsapms and recovers the real rsapms during decryption
by idealized table lookup. Please consult our source code for this idealized version. To state
the assumption more concisely, we define this assumption without typing requirement using a
cryptographic game. The RSA-PMS game implies the above idealization up to a loss in the
reduction incurred because it considers only a single honest RSA public key, i.e., for p.p.t. A
and p.p.t. A’, it holds that

∀A. RSAKey · CRE · RSA ·A ∀A′. RSAKey · CRE · RSA · RSAGame0 ·A′

≈ε RSAKey · CRE · RSAi ·A iff ≈ε RSAKey · CRE · RSA · RSAGame1 ·A′ .

We say that the RSA-PMS assumption holds if RSAKey · CRE · RSA is (RSAGame0 ,
RSAGame1)-secure. We give the code for RSAGame0 and RSAGame1 in Fig. 5.3.

Crucially, decrypt returns a random pms in case of decryption error to prevent the Bleichen-
bacher [1998] attack. The adversary’s goal is to guess the side b of the game he is intaracting
with. When b = 0, we have a single key version of the concrete TLS modules. When b = 1, the
ciphertext is independent of the honestly generated PMSs.

Following Jonsson and B. S. Kaliski [2002] we can reduce RSA-PMS to the one-wayness of
PKCS#1 v1.5 under existence of a plaintext checking oracle [Okamoto and Pointcheval, 2001].

30

This, however, requires the random oracle model. More precisely, extractRSA needs to be mod-
eled as a random oracle, and IRSAGame is extended with such an oracle to idealize master secret
extraction. The one-wayness of PKCS#1 v1.5 under existence of a plaintext checking oracle can
in turn be further related to the one-wayness of RSA given a partial RSA decision oracle [Jons-
son and B. S. Kaliski, 2002]. Next, we outline this reduction proof in our setting.

One-wayness states that for x = random 46, sk, pk =keyGen(), and c=encrypt PKCS1v15 pk
pv@x an adversary given pk, c, and access to let pco plain cipher = (decrypt sk cipher = plain)

cannot efficiently output x (with high enough probability in short enough time). The specific
form of the challenge plaintext, pv@x, models a TLS detail, namely that the minimum supported
TLS version is appended in front of the pms value.

PROVING THE RSA-PMS ASSUMPTION FOR TLS Given a successful RSAGame attacker A,
we build a PKCS#1 v1.5 one-wayness attacker B. The reduction B uses an auxiliary list L that
is originally empty and will store failed or delayed decryption attempts. B is given a value c for
pv for which it should find the plaintext pms. When A queries genRSA encrypt extract si pv, B
picks a random value ms and returns (c,ms).

We first describe how B simulates calls to extractRSA which, as this proof is in the random
oracle model, are translated into calls to the random oracle H .

B responds to extractRSA si pv pms queries as follows. If the query is old, the output is
already defined in H . Otherwise B queries the pco on pms,c. If pco outputs true, B wins by
outputting pms and is done. Next, B queries pco on pms,c∗ for all (pv, c∗, Cr, Sr) 7→ ms in L.
If pco outputs true, B will use this ms as the result of extractRSA. Otherwise B generates a
random value for a fresh ms. Finally B programs H with (pv, pms, Cr, Sr) 7→ ms to return ms.

B answers a decrypt extract si pv c query by first sending pms, c to pco for every pms string
such that (pv,pms,Cr,Sr) 7→ ms is in H . If pco returns true for some pms then B returns the
corresponding ms. If the pco oracle returns false, it generates a random value ms and adds
(pv, c, Cr, Sr)7→ ms in L. It sends ms as the response to the query.
Correct simulation. We check that all oracle functions provided to A return the expected distri-
butions:

• The simulation of genRSA encrypt extract si pv returns a PKCS#1 v1.5 ciphertext en-
crypting a random pms and a random value ms.

• The simulation of extractRSA si pv pms returns random values, except when queried on
the same values before, or when the value was returned by decrypt extract si’ pv c where
si’.init crand=si.init crand and si’.init srand=si.init srand. In the latter case, the simula-
tion guarantees that pms is the decryption of the ciphertext c provided to decrypt extract.

• The simulation of decrypt extract si’ pv c returns ms when queried on the challenge ci-
phertext and challenge si pv such that si’.init crand=si.init crand and si’.init srand=si.
init srand. Otherwise it either returns a value ms such that either (pv, pms, Cr, Sr) 7→ ms
in H where pms is a decryption of c. Or a random value ms which will be returned in
calls to extractRSA si pv pms), if pms is a decryption of c and si’.init crand=si.init crand
and si’.init srand=si.init srand.

In the implementation a random ms could also result from a random pms being returned
by decrypt on decryption failure. This value is however unpredictable to A and does not
allow him to test for any inconsistencies in the simulation. Note that crucially here we
rely on the fact that decrypt extract si pv c can only be queried once per (Cr Sr) pair.

Probability analysis. We now compare the success probability of A to that of B. We assume
that A runs in less than t time, makes at most qD and qR decrypt extract and extractRSA queries
respectively, and has success probability at least ε, i.e. AdvA = |Pr[RSAGame0 · A ⇓ 1] −
Pr[RSAGame1 ·A ⇓ 1]| = ε.

31

The games differ only on whether the pms values in the calls to encrypt and extractRSA in
function genRSA encrypt extract are the same or different:
#if ideal
let fake = CRE.genRSA pk pv
log := (fake,pms)::!log
let c = encrypt pk pv fake
#else
let c = encrypt pk pv pms
#endif
extractRSA si pv pms

Stated otherwise, unless A calls extractRSA on values (v, pms, Cr, Sr) which we denote by the
event E, he has no way of distinguishing real from ideal and thus

|Pr[RSAGame0 ·A ⇓ 1|¬E]− Pr[RSAGame1 ·A ⇓ 1|¬E]| = 0 .

We split the success probability of A by E, and get ε ≤ 0 · Pr[¬E] + 1 · Pr[E], and so A
queries extractRSA for pms within qR queries at least with probability ε. Comparing the running
time of A and B we observe that B makes at most 3 · qR queries to pco and does O(qR + qD)
elementary table lookups. This would contradicts the one-wayness of RSA in presence of a
plaintext checking oracle and thus provides evidence against the feasibility of the RSA-PMS
adversary A. 2

This proof relies on random oracles, and would require to switch our whole analysis of TLS
into a relativized complexity theoretic world in which random oracles exist. The RSA-PMS
assumption however is independent of random oracles. This can be seen by the following proof
in the standard model which assumes that future TLS standards will employ proper chosen
ciphertext secure encryption schemes. A disconnect from reality very different from random
oracles.

PROOF OUTLINE OF RSA-PMS ASSUMING CCA2 ENCRYPTION If we, hypothetically,
assume that encrypt and decrypt use a chosen ciphertext secure encryption scheme instead of a
malleable one, the proof can be substantially simplified.

As the fist step we idealize encryption, i.e. we encrypt a zero string, and decrypt by table
lookup using the ciphertext. Now the ciphertext c returned by genRSA encrypt extract does not
depend on the bit b anymore. Thus, the only chance A has in distinguishing RSAGame0 from
RSAGame1 is by guessing fake which can only happen with probability qD/246·8.

To get closer to a proof by typing we can define the plain interface of the CCA encryption
scheme to be CRE.rsapms, which we can then idealize with some probability loss to:
val genRSA: pk:RSAKeys.pk→ pv:ProtocolVersion→ (;pk,pv) rsapms{Gen(pk,pms)}
val coerceRSA: pk:RSAKeys.pk→ pv:ProtocolVersion→ bytes→ (;pk,pv)rsapms{ !pms’,id’.

Gen(id’,pms’)⇒ pms != pms}
The postcondition of coerceRSA which is used by decrypt when successfully decrypting cipher-
texts generated by the adversary, guarantees that the adversary is unable to guess rsapms values
generated by genRSA. This in turn guarantees that the lookup in decrypt extract only succeeds
for the challenge ciphertext, which makes the real and the ideal version of RSAGame perfectly
indistinguishable. Note that the loss in the reduction is covered by the idealization of genRSA
and coerceRSA in CRE. We do not yet idealize extractRSA as this relies on good pre-master
secrets and thus relies on the RSA-PMS assumption. 2

The DHE-PMS assumption For Diffie-Hellman, it may seem that pre-master secret security
relies simply on the DDH assumption, which states that gxy is indistinguishable from a random
gz . As noted by Jager et al. [2012] this is however not the case. TLS clients output keys for gxy

32

let pp = genPP()
let gy, secret = genKey pp
(∗ gy: fixed, honest server keys ∗)

let private log gx
(∗ a log of honest gx ∗)
let private log
(∗ a log of honest (gx,gy)→ honest PMS∗)

let genKey () =
let gx, = genKey pp
log gx:= gx:: !log gx
gx

let exp extract si gx
#if ideal
let pms =

if honest gx
then

match assoc (gx,gy) !log with
| None→

let pms=CRE.sampleDH p g gx gy
log := ((gx,gy),pms)::!log; pms

| Some pms→ pms
else

exp p g gx gy secret (∗ concrete ∗)
#else
let pms = exp p g gx gy secret
#endif
extractDH si pms

(∗ we only return the resulting ms ∗)

Figure 9: The code for DHGame0 and DHGame1; the latter is obtained by setting the ideal
compile flag. The interface IDHGame gives the adversary access to pp, gy, genKey and exp extract.

while the attacker is still able to impersonate the client to query the server on a gx
′

of his choice,
for which the server will then compute gx

′y . Given such a DH oracle the DDH assumption
simply does not hold anymore. We can only restore security by considering the larger key
exchange protocol in which the attacker can only learns extractDH si gxy and extractDH si gx

′y .
Our joint cryptographic assumption about the combined modules DH · CRE states that the

real DH module can be replaced with an ideal DH module that for pairs of honest gx and gy
values replaces gxy by gz . Please consult our source code for this idealized version.

To state the assumption concisely, we define it without typing requirements using a crypto-
graphic game. The RSA-PMS game implies the above idealization up to a loss in the reduction
incurred because it only considers a single honest server DH value gy, i.e., for p.p.t. A and p.p.t.
A’, it holds that

∀A. DHGroup · CRE ·DH ·A ∀A′. DHGroup · CRE ·DH ·DHEGame0 ·A′

≈ε DHGroup · CRE ·DH i ·A iff ≈ε DHGroup · CRE ·DH ·DHEGame1 ·A′

The DH-PMS assumption holds if DHGroup · CRE · DH is (DHEGame0,DHEGame1)-
secure. The code for module DHGame1 is depicted in Fig. 9.

The adversary’s goal is to guess the side b. When b = 0, we have a single server gy version
of the concrete TLS modules. When b = 1, then gx and gy are independent of the honestly
generated PMSs. This game does not model all constraints on Cr and Sr enforced by TLS and
thus pessimistically gives the adversary more power than he has. This facilitates composition
and may afford some extra protection in case nonces are abused, as discussed by Rogaway and
Shrimpton [2006] for authenticated encryption, but requires a stronger assumption.

To allow comparison with Jager et al. [2012] we also consider a more restricted game
DHGame′ shown in Fig. 10, which is sufficient for our analysis if, like them, we consider only
ciphersuites with client authentication. In this case we can declare all epochs with anonymous
ciphersuites to be unsafe.

Under the restriction that genKey si is called only once and is called before exp extract, we
show that our game-based assumption is equivalent to the PRF-ODH assumption of Jager et al.
[2012] conditioned on extractDH being a good computational randomness extractor. In our
formalism, PRF-ODH is defined by the game in Fig. 11

The function wrap m′ converts the representation of (Cr,Sr) in the PRF-ODH assump-
tion into its corresponding SessionInfo. This allows reuse of our TLS code in the defini-

33

let pp = genPP()
let private gy, secret = genKey pp
(∗ gy: fixed, honest server keys ∗)

let private log gx
(∗ a log of honest gx→Cr, Sr ∗)
let private log
(∗ a log of honest (gx,gy)→ honest PMS ∗)

let genKey si si =
let CrSr = si.init crand, si.init srand
let gx, = genKey pp
log gx:= (gx,CrSr)::!log gx
gx, gy

(∗ gx, gy is released after fixing (Cr,Sr) ∗)

let exp extract si gx
let CrSr = si.init crand, si.init srand
let pms =

match assoc gx !log gx with
| Some(CrSr’) when CrSr=CrSr’→

#if ideal
let pms =

match assoc (gx,gy) !log with
| None→

let pms=CRE.sampleDH p g gx gy
log := ((gx,gy),pms)::!log; pms

| Some pms→ pms
#else
let pms = exp p g gx gy secret
#endif
Some (extractDH si pms)

| Some()→None
| None→ Some (extractDH si (exp p g gx gy secret))

(∗ we only return the resulting ms ∗)

Figure 10: The code for DHGame′0 and DHGame′1; the latter is obtained by setting the ideal
compile flag. The interface IDHGame′ gives the adversary access to pp, genKey si and exp extract.

let pp = genPP()

let private log gx = ref []

let challenge m =
let gx, = genKey pp
let gy, secret = genKey pp
(∗ gx: fixed, honest server keys ∗)
#if ideal
let ms=sampleMS (wrap m)
#else
let pms = exp p g gx gy secret
let ms = extractDH (wrap m) pms
#endif
gx,gy,ms

(∗ we only return the resulting ms ∗)

let queryDHO gx′ m′=
if List.mem gx′ log gx
then failwith "gx′=gx"

else
let pms = exp p g gx′ gy secret
extractDH (wrap m′) pms

(∗ we only return the resulting ms ∗)

Figure 11: The code for PRF-ODH′0 and PRF-ODH′1; the latter is obtained by setting the ideal
compile flag. The interface IPRF-ODH gives the adversary access to pp, challenge and queryDHO.

34

tion. The proof uses the fact that, if extractDH is a good computational randomness extrac-
tor, then extractDH si (CRE.sampleDH p g gx gy) is indistinguishable from the uniformly dis-
tributed master secret produced by sampleMS si .

PROOF OUTLINE OF PRF-ODH ASSUMING (DHGame′0,DHGame′1)-SECURITY AND CRE.
A successful adversary A against PRF-ODH can be used to build an algorithm B1 that wins the
DHGame′ game or an algorithm B2 that wins the CRE game.

• Game 1. The same as the PRF-ODH0 game.

• Game 2. The same as Game 1 except that instead of returning ms =extractDH (wrap m)
gxy it returns ms =extractDH (wrap m)gz for a randomly sampled z.

• Game 3. The same as Game 2 except that instead of returning ms =extractDH (wrap m)gz

for a randomly sampled z, it returns ms = sampleMS si.

Lemma 4 (Game 1-2) The distinguishing probability of A in Game 2 is is bounded by the
success probability of adversary B1 against DHGame′.

If we have a successful attacker A distinguishing Game 1 and Game 2 we build a successful
attacker B1 against DHGame′.

B1 receives p and simulates the environment of A which outputs m. B1 uses wrap to build
some si. It then queries genKey si to learn gy and exp extract si gy to complete it’s challenge
gx,gy,ms for A. If b = 0, these values are distributed like extractDH si gxy , otherwise like
extractDH si gz . B1 forwards the guess of A to break PRF-ODH.

Lemma 5 (Game 2-3) Any algorithm that distinguishes between Game 2 and Game 3 can be
used to build adversary B2 that wins the CRE game.

This follows from the definition of computational randomness extraction. 2

PROOF OUTLINE OF (DHGame′0,DHGame′1)-SECURITY ASSUMING PRF-ODH AND CRE.
A successful adversary A against DHGame′ can be used to build an algorithm B1 that breaks
the PRF-ODH game or an algorithm B2 that wins the CRE game.

• Game 1. The same as the DHGame′0 game.

• Game 2. The same as Game 1, except that instead of returning ms =extractDH si gxy it
returns ms = sampleMS si.

• Game 3. The same as Game 2, except that instead of returning ms = sampleMS si it returns
ms =extractDH si gz for a randomly sampled z.

This game is the same as DHGame′1.

Lemma 6 (Game 1-2) The distinguishing probability between Game 1 and Game 2 is is bounded
by the success probability of B1 against PRF-ODH.

If we have a successful attacker A distinguishing Game 1 and Game 2 we build a successful
adversary B1 against PRF-ODH. B1 receives p and simulates the environment of A which first
calls genKey si. B1 provides si.init crand@si.init srand as m to it’s challenger to learn gx, xy ,
and ms. It returns the first two values as gx and gy to A. When A queries for exp extract, B1

uses ms when queries on gx and a call to the ODH oracle for all other values. B1 forwards the
guess of A to break PRF-ODH.

Lemma 7 (Game 2-3) The distinguishing probability between Game 2 and Game 3 is is bounded
by the success probability of B2 against a CRE game.

This follows from the definition of computational randomness extraction. 2

35

type (;id:epoch) stream
type (;id:epoch, h:(;id)stream, r:range) data
val data:

id:epoch{not(Auth(id))} → s:(;id) stream→ r:range→
b:(;r) rbytes→ c: (;id,s,r) data

val repr:
id:epoch{not(Safe(id))} → s:(;id) stream→ r:range→
c: (;id,s,r) data→ (;r) rbytes

val split: id:epoch→ s:(;id) stream→
r0:range→ r1:range→ d:(;id,s,Sum(r0,r1)) data→
d0:(;id,s,r0) data ∗ d1:(;id,ExtendStream(id,s,r0,d0),r1) data

Figure 12: DataStream interface towards TLS (excerpt).

5.4 Related Work on Key Exchange
Cryptographic research on secure key exchange usually follows either a game-cased approach
or a simulation-based approach, as pioneered by Bellare and Rogaway [1993] and Canetti
and Krawczyk [2002]. Indeed, Gajek et al. [2008] outline an ambitious proof of TLS in the
simulation-based model of Canetti [2001]. However, Küsters and Tuengerthal [2011a] point
out that their use of the UC joint state theorem to obtain multi-session security relies on pre-
established identifiers not available in TLS, and suggest how to overcome this limitation. We
share with simulation-based definitions that we rely on indistinguishability to model both au-
thenticity and secrecy.

Morrissey et al. [2008] analyze a variant of the TLS handshake protocol. Fouque et al.
[2008] study the key extraction function of TLS. Jager et al. [2012] perform a game-based
security analysis of TLS relying on Paterson et al. [2011].

6 Main API & Theorems for TLS
We are now ready to explain our ideal interface for TLS and give our main theorems.

6.1 TLS API
The main API depends on two predicates on epochs, logically derived from those defined in §4
and §5:

• Auth(id), defined as SafeHS(SI(id))∧ StrongAuth(id), indicates that data exchanged over
a connection with epoch id is expected to be authentic in an ideal TLS implementation.
Our types prevent the forgery of such data.

• Safe(id), defined as SafeHS(SI(id))∧ Strong(id), indicates that data exchanged over id is
expected to be both authentic and secret in an ideal implementation. Our types prevent all
access to such data outside the application.

Both these predicates rely on the honesty of the pre master secret, and hence of the long-term
keys used in id. For simplicity, our API does not enable the compromise of StAE keys once they
have been safely generated by the handshake. However, since these keys are also typed using
interfaces with LEAK functions (see §4), it would be straightforward to formally supplement
our APIs with explicit functions that let the adversary generate corrupt keys. Similarly, we do
not currently model forward secrecy, which can in any case only be achieved for ephemeral
Diffie-Hellman ciphersuites.
DataStream The API is parameterized by an application-level plaintext module DataStream.
Fig. 12 provides its main interface towards TLS. (It may export a richer interface to other
application-level modules.) The indexed abstract type data represents messages exchanged over

36

TLS connections; stream is the type of specification-level sequences of data fragments, used to
index the messages sent (or received) at a particular position in the data stream. DataStream
may define data concretely e.g. as bytes, and stream as a list of bytes.

To send the next message over an established connection indexed by id, after sending the
stream s, the application may provide any value of type (;id,s,rg)data. As explained in §4, data
is also indexed by a range rg, so that the application may shape the traffic by hiding secret data
lengths within a given public range. Both data and stream are abstract types indexed precisely
by positions and epochs, thus only the application may access raw data or move data between
positions and epochs. The DataStream interface exports three functions to TLS. The functions
data and repr let TLS read the concrete binary representation of application data at un-Safe
indexes, and forge application data at un-Auth indexes. In addition, the split function enables
TLS to fragment data without looking at its contents, by providing two sub-ranges r0 and r1
that add up to the index range r; the function returns two data values that logically come one
after the other in their data stream. The application may disallow data from being split at certain
ranges, to prevent small fragments, for example.
Main TLS Interface Fig. 13 outlines our main F7 interface, omitting most refinements for sim-
plicity. The API provides abstract TLS connections using two main types: indexes (ConnectionInfo
, written CI for brevity) and states (Cn). An index is an immutable data structure detailing con-
nection parameters (see §5). A state is an abstract type, representing a handle c to a running
client or server TLS connection; its index is written CI(c). Initial states (Cn0) are returned by
connect or accept; they must then be used linearly; next states that leave the index unchanged
are written nextCn. The interface provides two main functions to operate on TLS connections,
read and write, plus a series of functions to initiate them and control their successive handshakes
(explained in §5).

• read takes the current state and returns an ioresult i, with different cases: Read(c,d) re-
turns an updated connection state c and some received data d; the index of d states that it
extends the input stream of the current epoch, and a postcondition states that if Auth holds
for this epoch, then the peer has sent that data; similarly Fatal and Close, report gen-
uine alerts from the peer if Auth holds; CertQuery notifies the application that the current
handshake requests some certificate authorization (either by resuming the handshake with
authorize or aborting it with refuse); Handshaken signals the completion of the current
handshake; the application can then inspect the new epoch before proceeding.

• write takes the current state and some data, and similarly returns an ioresult o with dif-
ferent cases, e.g., WritePartial returns an updated state and the rest of the message, after
sending its first fragment; and MustRead notifies the application that it should read until
the ongoing handshake completes before writing again.

For instance, a client application that implements data as strings may interact with TLS with a
(call −→ result) sequence as follows (with an implicit state threaded through the calls):
connect t g; read −→ CertQuery(q); authorize q −→ Handshaken;
write 6..30 "Hello world\n" −→ WriteComplete;
read −→ Read(0..24,"404\n"); read −→ Close(t).

A sample matching server trace may be
accept t′ g′;read −→ Handshaken;
read −→ Read(0..128,"Hello World\n");
write 4..4 "404\n" −→ WriteComplete;
shutdown; read −→ Close(t′).

TLS does not guarantee synchronization between input and output streams; for instance, the
client may write three messages d0, d1, d2 then read d′0, then initiate rekeying, while the server
reads d0, write d′0 and d′1, then reads d1. On the other hand, when notified of a Close or that

37

type (;c:CI) query

type Cn
type (;g:config) Cn0 = c0:Cn{InitCn(g,c0)}
type (;c:Cn) nextCn = c’:Cn{NextCn(c,c’)}
type (;c:Cn) msg i = r:range ∗ (;CI(c).id in, Stream i(c), r) data
type (;c:Cn) msg o = r:range ∗ (;CI(c).id out, Stream o(c), r) data
type (;c:Cn) ioresult i =
| Read of c’:(;c) nextCn ∗ d:(;c) msg i
{Extend i(c,c’,d) ∧ (Auth(CI(c).id in)⇒Write(CI(c).id in, Bytes i(c’))) }
| Close of TCP.Stream{Auth(CI(c).id in)⇒Close(CI(c).id in, Bytes i(c))}
| Fatal of a:alertDescription
{Auth(CI(c).id in)⇒Fatal(CI(c).id in,a,Bytes i(c))}
| CertQuery of c’:(;c) nextCn ∗ (;c’) query {Extend(c, c’)}
| Handshaken of c’:Cn {Complete(CI(c’),Cfg(c’)) ∧ ...}
| ...
val read : c:Cn→ (;c) ioresult i

type (;c:Cn,d:(;c) msg o) ioresult o =
| WriteComplete of c’:(;c) nextCn {Extend o(c,c’,d)}
| WritePartial of c’:(;c) nextCn ∗ d’:(;c’) msg o
{ ∃d0. Extend o(c,c’,d0) ∧ Split o(c, d, d0, c’, d’) }
| WriteError of alertDescription option
| MustRead of c’:Cn {...}
val write: c:Cn→ d:(;c) msg o→ (;c,d) ioresult o

val connect: TCP.Stream→ g:config→ c0:(;g)Cn0{CI(c0).role = Client}
val accept: TCP.Stream→ g:config→ c0:(;g)Cn0{CI(c0).role = Server}
val shutdown: c:Cn→ c’:Cn{...}
val rekey: c:Cn {CI(c).role=Client} → c’:(;c)nextCn{Extend(c,c’)}
val resume: TCP.Stream→ g:config→ sessionID→ c0:(;g)Cn0{...}
val rehandshake: c:Cn {CI(c).role=Client} → c’:(;c)nextCn{...}
val request: c:Cn {CI(c).role=Server} → c’:(;c)nextCn{...}
val authorize: c:Cn→ (;c) query→ (;c) ioresult i
val refuse: c:Cn→ (;c) query→ unit

Figure 13: Main TLS interface (excerpt).

a new handshake is complete, our interface guarantees that all previous fragments have been
received; so, the client knows that d2 was received, and the server knows that d′1 was received.

6.2 TLS Security

Adversarial Network As usual with communications protocols, the adversary is in full control
of the network. This is modelled by a trivial TCP implementation, written TCP below, that reads
and writes into buffers shared with the adversary. For instance, we define TCP.write as
let write ns (b:bytes) = buffer o := (ns,b)::!buffer o

The application and its adversary may repeatedly set the input buffer, call the TLS interface, and
read the output buffer, thereby scheduling any number of parallel connections.
TLS Security, using the Typed API Our main theorem is stated for a class of adversaries that
range over restricted programs well-typed against the TLS API. As illustrated below, such pro-
grams include TLS applications composed with their own adversaries, and our theorem enables
the automated security verification of these applications by typechecking. In addition, §6.3
gives a corollary, stated more cryptographically as security for a class of adversaries with oracle
access to functions over plain datatypes (bytes, pairs, and integers) rather than those of our API.

38

Let I i
DS be the dataStream interface (Fig. 12) and I i

TLS be our main TLS interface (Fig. 13),
including auxiliary interfaces such as ICert to give the adversary control over long-term key
management.

Definition 11 A module C is TLS-secure when it is (I i
DS, ITCP) ; I i

TLS-secure for restricted
users.

Intuitively, the definition means that TLS, used to communicate application data streams
provided by (DS, A), treats data sent over connections with Safe indexes as if it were abstract—
only the application is able to create and read them. Moreover, the whole streams are authenti-
cated, interleaved with occurrences of TLS events about the handshake and alerts.

Theorem 6 (TLS Security) For any StAE and HS that are I i
StPlain ;IiStAE-secure and I i

StAE ;

I i
HS-secure for restricted users, the module StAEPlain · StAE · HS · TLS is TLS-secure.

Proof outline Recall the definition of Safe(id) as SafeHS(SI(id))∧ Strong(id); thus indexes safe
for HS and StAE are also safe with regards to our TLS implementation. The main step of the
proof is by typechecking our implementation code, that is, I i

DS ` StPlain ; I i
StPlain (Lemma

StPlain.tc7) and ITCP, I
i
DS, I

i
StAE, I

i
HS ` TLS ; I i

TLS (Lemmas Dispatch.tc7 and TLS.tc7, where
Dispatch.fs is an auxiliary module of TLS that multiplexes between content types.).

We combine Theorems 4, 5, and 6 and summarize them in cryptographic terms as follows:
If the cryptographic building blocks of TLS are IND-CPA, INT-CMA, SPRP, and PRF secure
for strong record cipher-suites and INT-CMA, CRE, PRF, RSA-PMS, and DH-PMS secure
for strong handshake cipher-suites, then TLS is secure when used safely through our API. As
illustrated by our sample applications, the safe use of our API can easily be controlled by typing.

6.3 Security for ‘untyped’ adversaries
Theorem 6 holds for any composition of applications and their adversaries well-typed against
our TLS API. To show that the adversary power is not unduly constrained by typing, we give
another, simply-typed API that exports only functions on basic types such as int and bytes and
we typecheck its implementation against the main typed API. Cryptographically, this amounts
to proving game-based security for adversaries A with oracle access to the TLS API. We apply
Theorem 6 to restricted TLS users (DSb,UTLS ·A) defined as follows:

• DSb is a fixed, typed implementation of DataStream that defines data as an abstract type
with oracle functions for creating data from ranges rg and bytes v within that range, and
extracting bytes from data, and that, for Safe indexes, passes to TLS either v (when b = 0)
or a max-sized array of zero bytes (when b = 1).

• UTLS is a fixed, typed implementation of our basic TLS API IUTLS that maintains a
private table from integers to current states of TLS connections and that exports the same
functionalities as the TLS API with base types (see files UTLS.fs, UTLS.fs7 and lemma
UTLS.tc7).

For instance, UTLS defines a TLS write oracle of the form
let write (i:int) rg (v:bytes) : int =

match findCn i with
| Some(cn)→ let b = truncate rg v in

match (TLS.write cn (rg, data rg b)) with
| WriteComplete(cn’)→ updateCn i (Some(cn’)); [| 0 |]
| . . .
| None→ [| 1 |]

39

• A ranges over all p.p.t. programs such that we have ITCP, IUTLS ` A; although we still
formally require that A be typed, this does not restrict its power, inasmuch as IUTLS only
exports functions on plain data types.

We arrive at a usual cryptographic game (on a large amount of code) in which (1) A needs
to distinguish between real encryptions and encryptions of zero; and (2) A attempts to break
application integrity.

Theorem 7 (Game-Based Security) Let T be TLS-secure.

(1) For all p.p.t. adversaries A with access to the oracles defined by the challenger UTLS and
TCP: DS0 · TCP · T · UTLS ·A ≈ε DS1 · TCP · T · UTLS ·A.

(2) For all p.p.t. adversaries A with access to the oracles defined by the challenger UTLS and
TCP: DS0 · TCP · T · UTLS ·A is asymptotically safe.

Informally, this means that A cannot win a game defined in terms of matching conversations,
for instance by making an honest client apparently open a connection with an honest server and
a strong ciphersuites without that server having a matching conversation. 3

6.4 Verified TLS Applications

Ad hoc client authentication Our first sample application illustrates a typical pattern: an
anonymous client and a server establish a TLS connection, then proceed with client-authentication
at the application level, relying on shared secret bytes, which may represent a username–
password pair, a token, or a secure cookie.

Our sample application security is that, whenever the client sends the authenticator and
whenever the server accepts an authenticator as valid, (1) the client and server share a secure
session; and (2) the adversary gains no information about the authenticator (hence the client
identity). For simplicity, in contrast with our general theorem, we use a strong ciphersuite, a
single honest server certificate, and a secure token repository with tokens that fit in a single
fragment, so we can specify our application code as:
val client: url→ username→ token→ c:Connection option
val server : unit→ u:username ∗ c:Connection
{ ∃token. Valid(u,token) ∧ Login(CI(c).id in,u,token) } option

To model (1), the client assumes the event Login(CI(c).id out,username, token) before send-
ing out his token, and the post-condition of server guarantees that the user is registered and
authenticated. Application-level authentication holds only inasmuch as the adversary does not
guess the authenticator, with a probability that depends on its min-entropy. We capture this
assumption by coding an ideal token functionality that guarantees that honestly generated and
coerced (guessed) authenticators never collide.
type token
val create : unit→ tk:token{Honest(tk)}
val register : u:string→ tk:token{Honest(tk)} → unit{Valid(u,tk)}
val verify : u:string→ tk:token→ b:bool{b⇒Valid(u,tk)}
val coerce : bytes→ tk:token{not(Honest(tk))}

We define a DataStream module that sends tokens (within a given length range) as data at
the beginning of the stream:
(;id,emptyStream,(minTkLen,maxTkLen)) data =

tk:token{∃u. Valid(u,tk)⇒ Login(id,u,tk)}

3The apparent lack of a premise in the corollary is because our implementation only provides security for Strong and
StrongHS indexes. Only when these predicates are true does it rely on cryptographic hardness assumptions.

40

predicate Request of epoch ∗ bytes
predicate Response of epoch ∗ bytes ∗ bytes
function val StreamToBytes: id:epoch ∗ (;id) stream→ bytes
type (;id:epoch, h:(;id) stream, r:range) data = {

contents: b:(;r) rbytes{
(∃rq . Request(id, rq)

∧ (∃s . rq = StreamToBytes(id, h) @| (b @| s)))
∨ (∃rq, rp . Request(id, rq)

∧Response(id, rq, rp)
∧ (∃s . rp = StreamToBytes(id, h) @| (b @| s))) }}

val createRequest:
id:epoch→ s:(;id) stream{EmptyStream(id,s)} → r:range→
b:(;r) rbytes{Request(id, b)} → (;id,s,r) data

Figure 14: RPCDataStream interface (excerpt).

so that type abstraction ensures both (1) and (2). F7 shows that our DataStream and application
code modules are well typed, using the TLS API and the ideal token interface. This suffices to
show that our application is secure, except for the (small) probability that an adversary guesses
the authenticator, and the negligible probability that an adversary can break our TLS idealiza-
tion. Using our length hiding TLS API for authenticators enables us to get this simple guar-
antee; without it traffic analysis might help guessing attacks, for example, if the token were a
compressed HTTP session cookie Duong and Rizzo [2012].
Secure RPC Our second application is an RPC library that relies on TLS to exchange multi-
ple requests and responses after mutual authentication. By typechecking our code and applying
Theorem 6, we easily obtain secrecy, authenticity, and correlation between requests and re-
sponses. The full paper presents an RPC DataStream module that defines data concretely as
bytes, with a refinement that says that it must be a fragment of either a serialized request or
a serialized response (to handle fragmentation if their size exceeds 16K). By type abstraction,
TLS guarantees that RPC will handle and deliver message fragments in accordance with the
DataStream interface: messages will be kept secret and will arrive in the right order with strong
authentication.

Fig. 14 gives an excerpt of RPCDataStream, and shows how to define the type data to protect
the two message exchange. The predicate Request(id,rq) represents a valid request rq in the
session id, while Response(id, rq, rp) represents a valid response rp, for the session id and the
request rq. The abstract type data is concretely implemented as a byte array with a refinement
that says it must be a prefix of either a request or a response. TLS guarantees that it will
handle and deliver message fragments in accordance with the DataStream interface: fragments
will arrive in order with strong authentication and secrecy guarantees. By typechecking our
sample application and applying Theorem 6, we show that RPC over TLS provides integrity
and confidentiality against p.p.t. adversaries with access to TCP traffic and oracle access to the
RPC interface.

7 Limitations and Future Work
We implemented, tested, and cryptographically verified a reference implementation of TLS.
By writing a few hundred lines of F# and F7 code on top of our API, we also confirmed that
applications can rely on our theorems to prove end-to-end security while ignoring the low-level
details of the RFCs.

Still, our implementation and security theorems come with caveats. We do not yet support
some algorithms and ciphersuites (e.g. ECDH, AES-GCM) and we still have to optimize our
code for performance (see §2.4). Its security also relies on a large, unverified TCB: the F7 type-

41

checker, the F# compiler, the .NET runtime, and the core cryptographic libraries. Besides, we
do not formally account for side channels attacks based e.g. on timing, even though our im-
plementation tries to mitigate them; proving the absence of such attacks would require specific
tools (see e.g. Askarov et al. [2010]).

Our verification method enabled us to develop modular security proofs for a 5KLOC pro-
gram, based on precise cryptographic assumptions on core primitives. Most proofs are by auto-
matic typechecking, but writing type annotations requires attention and care, and the resulting
interfaces amount to 2.5KLOC. Some proofs also rely on usage restrictions (e.g. Definition 7)
that are not established by typing, but could be verified using more advanced affine type sys-
tems Swamy et al. [2011]. We focus on the standard model of cryptography, resulting in rather
strong assumptions for the Handshake, similar to those of Jager et al. [2012] for the DHE key
exchange. Relaxing these assumptions and developing concrete security bounds [Bellare et al.,
1997] for our implementation is left as important future work.

References
T. Acar, M. Belenkiy, M. Bellare, and D. Cash. Cryptographic agility and its relation to circular encryption.

In EUROCRYPT, pages 403–422, 2010.
J. H. An and M. Bellare. Does encryption with redundancy provide authenticity? In B. Pfitzmann, editor,

EUROCRYPT, volume 2045 of LNCS, pages 512–528. Springer, 2001.
A. Askarov, D. Zhang, and A. C. Myers. Predictive black-box mitigation of timing channels. In CCS,

pages 297–307, 2010.
M. Avalle, A. Pironti, D. Pozza, and R. Sisto. JavaSPI: A framework for security protocol implementation.

International J. of Secure Software Engineering, 2:34–48, 2011.
M. Backes and B. Pfitzmann. Symmetric Encryption in a Simulatable Dolev-Yao Style Cryptographic

Library. In CSFW, pages 204–218, 2004.
M. Backes, M. Dürmuth, D. Hofheinz, and R. Küsters. Conditional reactive simulatability. Int. J. Inf. Sec.,

7(2), 2008.
M. Backes, C. Hritcu, M. Maffei, and T. Tarrach. Type-checking implementations of protocols based on

zero-knowledge proofs. In FCS, 2009.
M. Backes, M. Maffei, and D. Unruh. Computational sound verification of source code. In CCS, 2010.
M. Backes, C. Hriţcu, and M. Maffei. Union and intersection types for secure protocol implementations.

In TOSCA’11, pages 1–28, 2012.
M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis of the

generic composition paradigm. J. Crypt., 21:469–491, 2008.
M. Bellare and P. Rogaway. Entity authentication and key distribution. In CRYPTO, pages 232–249, 1993.
M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption.

In FOCS, pages 394–403, 1997.
M. Bellare, T. Kohno, and C. Namprempre. Authenticated encryption in SSH: provably fixing the SSH

binary packet protocol. In V. Atluri, editor, CCS, pages 1–11. ACM, 2002.
M. Bellare, T. Kohno, and C. Namprempre. Breaking and provably repairing the SSH authenticated en-

cryption scheme: A case study of the encode-then-encrypt-and-mac paradigm. ACM Trans. Inf. Syst.
Secur., 7(2):206–241, 2004a.

M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. In FSE 2004, pages 389–407,
2004b.

J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis. Refinement types for secure imple-
mentations. ACM TOPLAS, 33(2):8, 2011.

K. Bhargavan, C. Fournet, and A. D. Gordon. Modular verification of security protocol code by typing. In
POPL, pages 445–456, 2010.

K. Bhargavan, C. Fournet, R. Corin, and E. Zălinescu. Verified Cryptographic Implementations for TLS.
ACM TISSEC, 15(1):1–32, 2012.

B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In CSFW, pages 82–96,
2001.

42

B. Blanchet. A computationally sound mechanized prover for security protocols. In IEEE S&P, pages
140–154, 2006.

D. Bleichenbacher. Chosen ciphertext attacks against protocols based on RSA encryption standard PKCS
#1. In CRYPTO’98, pages 1–12, 1998.

B. Brumley, M. Barbosa, D. Page, and F. Vercauteren. Practical realisation and elimination of an ECC-
related software bug attack. In CT-RSA, 2011.

D. Brumley and D. Boneh. Remote timing attacks are practical. In USENIX Security, pages 1–14, 2003.
R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS,

pages 136–145, 2001.
R. Canetti and H. Krawczyk. Universally composable notions of key exchange and secure channels. In

EUROCRYPT, pages 337–351, 2002.
B. Canvel, A. P. Hiltgen, S. Vaudenay, and M. Vuagnoux. Password interception in a ssl/tls channel. In

CRYPTO, pages 583–599, 2003.
S. Chaki and A. Datta. ASPIER: An automated framework for verifying security protocol implementations.

In CSF 2009, pages 172–185, 2009.
A. Datta, A. Derek, J. C. Mitchell, and B. Warinschi. Computationally sound compositional logic for key

exchange protocols. In CSFW, pages 321–334, 2006.
L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, volume 4963, 2008.
J. P. Degabriele and K. G. Paterson. On the (in)security of IPsec in mac-then-encrypt configurations. In

CCS, pages 493–504, 2010.
G. Dı́az, F. Curtero, V. Valero, and F. Pelayo. Automatic verification of the TLS handshake protocol. In

SAC, pages 789–794, 2004.
T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246, 1999.
T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.1. RFC 4346, 2006.
T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246, 2008.
T. Duong and J. Rizzo. The CRIME attack. 2012. Ekoparty.
K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. Peek-a-boo, I still see you: Why efficient traffic

analysis countermeasures fail. In IEEE S&P, pages 332–346, 2012.
P.-A. Fouque, D. Pointcheval, and S. Zimmer. Hmac is a randomness extractor and applications to tls. In

ASIACCS, pages 21–32, 2008.
C. Fournet, M. Kohlweiss, and P.-Y. Strub. Modular code-based cryptographic verification. In ACM CCS,

pages 341–350, 2011.
A. Freier, P. Karlton, and P. Kocher. The secure sockets layer (SSL) protocol version 3.0 – 1996. RFC

6101, 2011.
S. Gajek, M. Manulis, O. Pereira, A.-R. Sadeghi, and J. Schwenk. Universally composable security anal-

ysis of TLS. In ProvSec, pages 313–327, 2008.
M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov. The most dangerous code in

the world: validating SSL certificates in non-browser software. In CCS, pages 38–49, 2012.
S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-

message attacks. SIAM J. Comput., 17(2):281–308, 1988.
C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell. A modular correctness proof of IEEE

802.11i and TLS. In CCS’05, pages 2–15, 2005.
T. Jager, F. Kohlar, S. Schäge, and J. Schwenk. On the security of TLS-DHE in the standard model. In

CRYPTO, pages 273–293, 2012.
J. Jonsson and J. B. S. Kaliski. On the security of RSA encryption in TLS. In CRYPTO, pages 127–142,

2002.
J. Jürjens. Security analysis of crypto-based java programs using automated theorem provers. In ASE’06,

pages 167–176, 2006.
A. Kamil and G. Lowe. Analysing TLS in the strand spaces model. Technical report, Oxford University

Computing Laboratory, 2008.
J. Kelsey. Compression and information leakage of plaintext. In Fast Software Encryption, pages 95–102.

IACR, 2002.
V. Klima, O. Pokorny, and T. Rosa. Attacking RSA-based sessions in SSL/TLS. In CHES, pages 426–440,

2003.

43

T. Kohno, J. Viega, and D. Whiting. Cwc: A high-performance conventional authenticated encryption
mode. In FSE, pages 408–426, 2004.

H. Krawczyk. The order of encryption and authentication for protecting communications (or: How secure
is SSL?). In CRYPTO’01, 2001.

R. Küsters and M. Tuengerthal. Universally composable symmetric encryption. In CSF, 2009.
R. Küsters and M. Tuengerthal. Composition theorems without pre-established session identifiers. In CCS,

pages 41–50, 2011a.
R. Küsters and M. Tuengerthal. Ideal key derivation and encryption in simulation-based security. In

CT-RSA 2011, pages 161–179, 2011b.
R. Küsters, T. Truderung, and J. Graf. A framework for the cryptographic verification of java-like pro-

grams. In CSF, pages 198–212, 2012.
A. Langley. Unfortunate current practices for HTTP over TLS, 2011. http://www.ietf.org/
mail-archive/web/tls/current/msg07281.html.

N. M. Langley, A. and B. Moeller. Transport Layer Security (TLS) False Start. Internet Draft, 2010.
J. Lawall, B. Laurie, R. R. Hansen, N. Palix, and G. Muller. Finding error handling bugs in OpenSSL

using coccinelle. In EDCC’10, 2010.
U. Maurer and B. Tackmann. On the soundness of authenticate-then-encrypt: formalizing the malleability

of symmetric encryption. In CCS, pages 505–515, 2010.
N. Mavrogiannopoulos and S. Josefsson. GnuTLS documentation on record padding, 2011. http:
//www.gnutls.org/manual.

N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, and B. Preneel. A cross-protocol attack on the tls
protocol. In CCS, pages 62–72, 2012.

D. A. McGrew and J. Viega. The security and performance of the galois/counter mode (gcm) of operation.
In INDOCRYPT 2004, pages 343–355, 2004.

B. Moeller. Security of CBC ciphersuites in SSL/TLS: Problems and countermeasures. http://www.
openssl.org/˜bodo/tls-cbc.txt, 2004.

P. Morrissey, N. Smart, and B. Warinschi. A modular security analysis of the TLS handshake protocol. In
ASIACRYPT’08, pages 55–73, 2008.

J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-committing
encryption case. In CRYPTO 2002, pages 111–126, 2002.

K. Ogata and K. Futatsugi. Equational approach to formal analysis of TLS. In ICSCS, pages 795–804,
2005.

T. Okamoto and D. Pointcheval. React: Rapid enhanced-security asymmetric cryptosystem transform.
In D. Naccache, editor, CT-RSA, volume 2020 of Lecture Notes in Computer Science, pages 159–175.
Springer, 2001. ISBN 3-540-41898-9.

K. G. Paterson, T. Ristenpart, and T. Shrimpton. Tag size does matter: Attacks and proofs for the TLS
record protocol. In ASIACRYPT 2011, pages 372–389, 2011.

L. C. Paulson. Inductive analysis of the Internet protocol TLS. ACM TISSEC, 2(3):332–351, 1999.
M. Ray. Authentication gap in TLS renegotiation. http://extendedsubset.com/
Renegotiating_TLS.pdf, 2009.

E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. TLS renegotiation indication extension. RFC 5746, 2010.
P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap problem. In EUROCRYPT,

volume 4004 of Lecture Notes in Computer Science, pages 373–390. Springer, 2006.
P. Rogaway, M. Bellare, and J. Black. Ocb: A block-cipher mode of operation for efficient authenticated

encryption. ACM Trans. Inf. Syst. Secur., 6(3):365–403, 2003.
N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang. Secure distributed programming

with value-dependent types. In ICFP, pages 266–278, 2011.
S. Turner and T. Polk. Prohibiting secure sockets layer (SSL) version 2.0. RFC 6176, 2011.
S. Vaudenay. Security flaws induced by CBC padding - applications to SSL, IPSEC, WTLS ... In L. R.

Knudsen, editor, EUROCRYPT, pages 534–546, 2002.
A. K. L. Yau, K. G. Paterson, and C. J. Mitchell. Padding oracle attacks on CBC-mode encryption with

secret and random IVs. In FSE, pages 299–319, 2005.

44

http://www.ietf.org/mail-archive/web/tls/current/msg07281.html
http://www.ietf.org/mail-archive/web/tls/current/msg07281.html
http://www.gnutls.org/manual
http://www.gnutls.org/manual
http://www.openssl.org/~bodo/tls-cbc.txt
http://www.openssl.org/~bodo/tls-cbc.txt
http://extendedsubset.com/Renegotiating_TLS.pdf
http://extendedsubset.com/Renegotiating_TLS.pdf

	Introduction
	Transport Layer Security
	Compositional, Automated Verification

	A Modular Implementation of TLS
	API Overview
	Modules and Interfaces
	Modular Architecture for TLS
	Experimental Evaluation

	Cryptographic Security by Typing
	Games, Ideal Functionalities, and Typed Interfaces.
	Indexes for Multi-instance, Agility, and Corruption

	Authenticated Encryption for TLS Streams
	Traffic Analysis and Length Hiding
	Authenticated Encryption Schemes
	Related Work on Authenticated Encryption

	The Handshake Protocol
	The Handshake Interface
	Handshake Security and Modular Verification
	Key distribution for TLS master secrets
	Related Work on Key Exchange

	Main API & Theorems for TLS
	TLS API
	TLS Security
	Security for `untyped' adversaries
	Verified TLS Applications

	Limitations and Future Work

