
1

Triple Handshakes and Cookie Cutters:
Breaking and Fixing Authentication over TLS

Karthikeyan Bhargavan∗, Antoine Delignat-Lavaud∗, Cédric Fournet†, Alfredo Pironti∗ and Pierre-Yves Strub‡
∗INRIA Paris-Rocquencourt †Microsoft Research ‡IMDEA Software Institute

Abstract—TLS was designed as a transparent channel abstrac-
tion to allow developers with no cryptographic expertise to protect
their application against attackers that may control some clients,
some servers, and may have the capability to tamper with network
connections. However, the security guarantees of TLS fall short
of those of a secure channel, leading to a variety of attacks.

We show how some widespread false beliefs about these guar-
antees can be exploited to attack popular applications and defeat
several standard authentication methods that rely too naively on
TLS. We present new client impersonation attacks against TLS
renegotiations, wireless networks, challenge-response protocols,
and channel-bound cookies. Our attacks exploit combinations of
RSA and Diffie-Hellman key exchange, session resumption, and
renegotiation to bypass many recent countermeasures. We also
demonstrate new ways to exploit known weaknesses of HTTP
over TLS. We investigate the root causes for these attacks and
propose new countermeasures. At the protocol level, we design
and implement two new TLS extensions that strengthen the
authentication guarantees of the handshake. At the application
level, we develop an exemplary HTTPS client library that
implements several mitigations, on top of a previously verified
TLS implementation, and verify that their composition provides
strong, simple application security.

I. TRANSPARENT TRANSPORT LAYER SECURITY?
TLS is the main Internet Standard for secure communica-

tions and still, after 20 years of practice, the security it provides
to applications remains problematic.
I-A APPLICATIONS VS PROTOCOLS. By design, TLS intends
to provide a drop-in replacement of the basic networking
functions, such as connect, accept, read and write,
that can effortlessly protect any application against a net-
work attacker without the need to understand the protocol or
its underlying cryptography. Pragmatically, TLS offers much
flexibility, so the security properties provided by the protocol
[43, 35, 32, 29] and its implementations [20, 14, 15] depend
on how TLS is used. For instance, if the application enables an
unsuitable ciphersuite [4], uses compression [25], or ignores
state changes [45], it opens itself to attacks. Furthermore,
applications-level security mechanisms increasingly seek to
benefit from the underlying TLS connection by reusing its
authenticated peer identities, key materials [48], and unique
identifiers [6].

As a consequence, TLS libraries provide low-level APIs
that expose many details of the cryptographic mechanisms
and certificates negotiated during successive handshakes. Some
application-level libraries, such as CURL, seek to recover the
simplicity of a secure channel by implementing an abstraction
layer that smooths over the details of TLS by managing

sessions, validating certificates, etc. Meanwhile, TLS appli-
cations continue to rely on URLs, passwords, and cookies;
they mix secure and insecure transports; and they often ignore
lower-level signals such as handshake completion, session
resumption, and truncated connections.

Many persistent problems can be blamed on a mismatch
between the authentication guarantees expected by the appli-
cation and those actually provided by TLS. To illustrate our
point, we list below a few myths about those guarantees, which
we debunk in this paper. Once a connection is established:

1) the principal at the other end cannot change;
2) the master secret is shared only between the two peers,

so it can be used to derive fresh application-level keys;
3) the tls-unique channel binding [6] uniquely identi-

fies the connection;
4) the connection authenticates the whole data stream, so it

is safe to start processing application data as it arrives.
The first is widely believed to be ensured by the TLS renego-
tiation extension [49]. The second and third are used for man-
in-the-middle protections in tunneled protocols like PEAP and
some authentication modes in SASL and GSS-API. The fourth
forms the basis of HTTPS sessions on the web.

These assumptions are false, and this enables various at-
tacks, even against applications using the latest, fully-patched
TLS 1.2 implementations. Whether these attacks should be
blamed on the protocol or its usage, we argue that the transport
and application protocols must be analyzed together to achieve
reliable, meaningful, application-level security.

On the other hand, our paper does not challenge the cryp-
tographic security of the core constructions of TLS—most
of our attacks apply even under the (theoretical) assumption
that clients and servers only use cryptographically strong
ciphersuites, as formalized, for example, in [15, 35, 29, 16].
I-B NEW ATTACKS OVER TLS. We report new practical at-
tacks against applications that rely on TLS for their security.
The first family of attacks uses a combination of successive
TLS handshakes over multiple connections to disrupt client
authentication. The second family of attacks targets HTTPS
message integrity but may apply to other application protocols.
Triple Handshakes Considered Harmful (§V, §VI) We
first point out unknown key-share [17] vulnerabilities in RSA,
DHE, and abbreviated handshakes, and we compose them to
implement a malicious TLS proxy that can synchronize the
keys on separate connections with honest peers. Some of these
vulnerabilities were previously known, and do not in them-
selves constitute attacks on the integrity and confidentiality
guarantees of TLS. However, we show that they enable new

2

man-in-the-middle attacks that break a variety of authentication
mechanisms built over TLS, including (a) client-authenticated
TLS renegotiation—for example if a client presents her cer-
tificate to two TLS servers, one can impersonate the client at
the other; (b) compound authentication in tunneled protocols;
(c) channel bindings for application-level challenge-response
protocols; and (d) channel bindings for bearer tokens. We
report concrete attacks against published specifications and
popular applications in all these categories, including main-
stream browsers and HTTP client libraries, VPN applications,
wireless applications, and mail and chat servers.
Truncating Headers & Forcing Cookies (§III) Indepen-
dently, we show that web browsers and servers often ignore
TLS disconnections and tolerate ill-formed messages, thereby
enabling message truncations. Although this vulnerability is
generally known [13, 52], we show how to apply truncation
to HTTP headers and HTML forms, opening new exploits. In
particular, our attacks completely defeat cookie-based authen-
tication. We also show new exploits based on known attack
vectors like cookie-forcing and its use for login CSRF [12, 18].
In particular, we show that building new application-level
protocols such as single sign-on and synchronization protocols
using cookies is foolhardy; they amplify login CSRF attacks
and enable network attackers to steal users’ private files.
I-C TOWARDS VERIFIED APPLICATION SECURITY. In light
of the two families of attacks outlined above, how to ensure
that a TLS application properly handles its interactions with
the TLS API? How to reliably lift TLS security to application
security? Broadly, we can either build countermeasures into
TLS; or carefully implement and verify simpler security APIs
over TLS; or, less robustly, promote prudent practices for
writing secure applications over TLS.
Proposed TLS Extensions (§VII) One approach is to
strengthen the protocol to provide more robust security. To
this end, we propose two new TLS extensions that prevent the
attacks of §VI without the need to change applications. These
extensions have a negligible impact on performance and code
complexity, and can be deployed while preserving backward
compatibility. They apply to all protocol versions from SSL3
to TLS 1.2, as well as DTLS. To validate them experimentally,
we implemented and tested patches for two existing TLS
implementations: OpenSSL and miTLS. As future work, we
plan to formally model their security benefits by extending
the verified cryptographic model of miTLS [15, 16].
Simple Verified HTTPS over TLS (§VIII) In principle,
carefully-written applications can defend against these attacks,
without the need to change TLS. To validate our main recom-
mendations, and show that “transparent” application security
can indeed be achieved over TLS, we program miHTTPS:
a simple HTTPS library in F#, similar to CURL, on top
of miTLS. We specify its intended security properties and
we verify them using F7, a type-based verification tool.
Thus, we formally relate the precise, low-level TLS API
provided by miTLS to a simpler, more abstract HTTPS API.
In combination, we obtain the first cryptographically-verified
implementation for HTTPS. In its current state, miHTTPS is
a proof-of-concept: it does not nearly provide the flexibility

required by modern browsers and web services. However, it
automatically handles all the details of the underlying TLS
connections, including multiple handshakes, resumption and
negotiation, and truncations.

I-D MAIN CONTRIBUTIONS. We describe a new class of
man-in-the-middle attacks against authentication over TLS,
targeting the resumption and renegotiation features of the
handshake. We also present new exploits on HTTPS sessions
based on cookie-forcing and truncation. We apply these attacks
to break the expected authentication guarantees of several
state-of-the-art protocols, libraries, applications, and web ser-
vices. We have contacted many vendors, proposing immediate
mitigations and countermeasures, as well as more long-term
fixes to the corresponding protocol specifications. Our TLS-
level proposals are consolidated in patches for OpenSSL and
miTLS. We have also built and verified a basic high-level
HTTPS API on top of miTLS, to validate our main application-
level recommendations in a simplified setting.

Contents §II reviews the dangers of application security over
TLS. §III illustrates these dangers by presenting new attacks
caused by truncating HTTPS traffic and forcing cookies. §IV
recalls the relevant protocol aspects of TLS. §V describes a ma-
licious TLS proxy that synchronizes connections between TLS
clients and servers. §VI presents new proxy-based attacks on
applications that use client authentication. §VII discusses TLS
countermeasures, implemented in OpenSSL and miTLS. §VIII
illustrates application-level countermeasures, demonstrating a
simple, provably secure HTTPS API on top of miTLS. §IX
discusses impact, limitations and responsible disclosure of the
attacks presented in this paper.

Online Materials An extended version of this paper, the
two patches implementing our proposed countermeasures for
OpenSSL and for miTLS, our verified implementation of
miHTTPS and further experimental data are available online
at https://secure-resumption.com.

II. TLS INTERFACES AND THEIR SAFE USAGE

Modern clients and servers interact with TLS in ways far
beyond the original intended interface. We discuss typical
usages of the protocol, relevant to the attacks of §III and §VI.

II-A SESSION AND CERTIFICATE MANAGEMENT. HTTP is
by far the most widely used application protocol over TLS.
Even the most basic HTTP operation, getting a file from
a given URL, may require multiple connections to different
servers due to redirections, authentication requests, temporary
errors, and many other factors. Thus, any HTTPS client
must manage and isolate multiple TLS sessions with different
principals: if a client ever uses a cached session with the wrong
server, the security guarantees of TLS collapse.

Similarly, any TLS application must implement a server
certificate validation procedure, which can combine subject
name and certificate purpose validation, pinning of certification
authorities, trust on first use (TOFU), among others [22, 28].
Once again, any error in this process may completely void the
security guarantees of TLS.

3

While session and certificate management are critical to
the security of the protocol, they are implemented at the
application level in contradiction to the network abstraction of
TLS. Even when TLS libraries provide default functionality for
these operations, they are not necessarily secure; for instance,
OpenSSL shares the client-side session cache between all
connections, even if they are to different hosts, unless it is
explicitly partitioned by the application.

II-B EXPOSURE TO TLS EVENTS. Another recurrent prob-
lem with TLS APIs is the way they should expose transport-
level events to the application. In this paper, we focus on two
events that can lead to attacks if ignored by the application:
renegotiation, and TCP connection closure.

Once a TLS connection is established, most applications
typically only use read, write and close. How can a
TLS library notify the application when renegotiation occurs?
What if the cipher or the peer certificate changes? At best,
the read primitive can return a non-fatal error code (like in
GnuTLS) which the application can either ignore or use to
enforce further checks on the new parameters. At worst, the
change is only visible if the application keeps polling specific
session parameters. To protect applications that ignore such
events from man-in-the-middle attacks [45], most TLS libraries
implement a protocol extension [49]. §VI-A shows how these
applications can still be attacked despite this countermeasure.

Since SSL3, the closure of a connection must be notified
to the other party with an authenticated protocol alert called
close_notify. Without this graceful closure, a man-in-the-
middle may have closed the TCP connection in the middle
of a TLS connection. To make this distinction, TLS libraries
should return a special error code when truncation is detected,
signaling to the application not to process any partial data
that may be buffered. However, in several implementations, the
read primitive returns the number of bytes read, while error
checking requires manual verification of a different parameter.
Many applications do not distinguish between normal and
unexpected closure, sometimes deliberately for compatibility.

Another class of problems appears when TLS is an optional
feature of the application protocol, or if state is shared between
encrypted and plaintext connections. §III illustrates how to
exploit these issues against HTTP.

II-C CLIENT AUTHENTICATION. Applications can use vari-
ous mechanisms for client authentication: client certificates
(e.g. in browsers, for virtual private networks, and for wireless
access points), bearer tokens (e.g. HTTP sessions cookies and
OAuth access tokens), or challenge-responses protocols (e.g.
HTTP digest authentication, and several SASL mechanisms
used by mail and chat servers).

TLS client authentication is generally considered the safest,
but is seldom used. Weaker mechanisms that rely on bearer
tokens are more common, but they allow complete long-term
impersonation of the user when a token is compromised.
Challenge-response authentication within TLS tunnels offers
better protection, but is still vulnerable to man-in-the-middle
attacks [8, 41]: if the user is willing to authenticate on a server
controlled by the attacker, the attacker can forward a challenge
from a different server to impersonate the user at that server.

To address the shortcomings of authentication at the applica-
tion level, new solutions have been recently proposed to expose
values taken from the TLS handshake to applications in order
to bind their bearer tokens and challenge-response protocols
to the underlying TLS channel. Hence, tunneled wireless pro-
tocols like PEAP [42] use compound authentication schemes
[44] to protect against rogue access points. SASL mechanisms
like SCRAM [39] use TLS channel bindings [6], in partic-
ular the tls-unique binding, to prevent man-in-the-middle
attacks even on anonymous TLS connections. Channel ID [10],
a follow up to Origin-Bound Certificates [24], proposes that the
client generate a long-lived pair of keys associated with each
top-level domain it connects to. The public key is treated as a
client identifier and, by binding bearer tokens such as cookies
to this public key, the server can ensure they can only be used
by the client they have been issued for, thus mitigating token
compromise. §VI studies the assumptions such mechanisms
make about TLS and presents attacks on a number of them.

III. TRANSPORT-LAYER ATTACKS ON HTTPS
As a case study of the API problems of §II, we consider

the use of HTTP over TLS [47]. In HTTP, messages consist
of two parts: the headers and an optional body, separated by
an empty line. Headers consist of colon-separated name-value
pairs, each terminated by a line break. The first header line
is special: in requests, it contains the method (either GET or
POST), path, and protocol version; in responses, it contains
the protocol version, status code, and status message. The
HTTP body is formatted according to the headers: by default,
its length is specified in the Content-Length header;
if the Content-Transfer-Encoding header is set to
chunked, the body is a sequence of fragments, each prefixed
by the fragment length, terminated by an empty fragment.

Due to the variety of (not necessarily correct) HTTP im-
plementations, most clients are very permissive when parsing
HTTP. For instance, they often accept message bodies whose
length does not match the one indicated in the headers, or
missing the last empty fragment in the chunked encoding.

For authentication, almost all websites rely on cookies,
which are name-value pairs set by servers in the Set-Cookie
header and sent back by clients in the Cookie header of
subsequent requests. The cookie store is shared between HTTP
and HTTPS connections, opening up a variety of attacks.
III-A COOKIE INTEGRITY. Modern web security policies are
expressed in terms of origin, i.e., the combination of protocol,
domain and port. Hence, HTTP requests and JavaScript inter-
actions are unrestricted within the same origin, and strictly
regulated across different origins [58]. In contrast, cookie
policies rely on domain and path; furthermore, cookies may
be set for any domain suffix and path prefix of the current
page, e.g. http://y.x.com/a can set cookies with domain
x.com and path /. This discrepancy causes major problems:
• Protocol: since there is no separation between HTTP and

HTTPS, by default, cookies set on encrypted connec-
tions are also attached to plaintext requests, in plain sight
of the attacker. To prevent this, the secure flag can be
sent when setting the cookie to indicate to the browser

4

never to send this cookie unencrypted. This protects the
confidentiality of cookies, but not their integrity, as it
still possible to overwrite secure cookies over HTTP.

• Domain: domains prefixed with a dot will match any
subdomain. Thus, a request to a.x.com attaches cook-
ies set for .x.com, but not those set for b.x.com. A
page may set cookies on any of its own domain suffix
that is not a public (such as “com” or “co.uk”), leading
to related-domain attacks.

• Port: since the port number is ignored, and even if a
website is only served over TLS, an attacker can still
use some unencrypted port to tamper with its cookies.

Cookies with the same name but different domain or path are
stored separately; all matching cookies are sent back in the
Cookie header in an unspecified order. Finally, there is a limit
on the number of cookies that can be stored for each top-level
domain name (e.g. x.co.uk). Beyond this limit, typically
around 1000, older cookies are automatically deleted. Thus,
an attacker can reliably delete legitimately set cookies.

Cookie forcing, cookie fixation, and cookie tossing all refer
to tampering with cookies, either from the network or from
a related subdomain. These issues have been well known for
years, and many proposals address them [12, 18, 24], but there
is still no way to defend against cookie forcing by a network
attacker that works on all current browsers. Experimentally,
we were able to force sessions on the top 10 Alexa websites
in the US, despite the mitigations deployed on some of them.

Worse, the impact of such forcing attacks has increased
considerably recently. For instance, many websites rely on
single sign-on services for authentication. If the session on
the identity provider (such as Facebook, Twitter or Google)
is replaced with the attacker’s, the victim may unwittingly
associate his accounts on many websites with the attacker’s
identity, even after leaving the attacker’s network. Furthermore,
in modern websites, many operations are performed asyn-
chronously. Thus, if a session is forced onto the browser before
such an action, it may be associated with the attacker’s account
without any feedback to the user. Finally, some browsers rely
on web login forms to provide features such as synchronization
of tabs, bookmarks and stored passwords. We found that login
CSRF attacks could trigger such features; even though a user
confirmation dialog is shown with the account name of the
forced session, it provides a tempting phishing target.

III-B THE COOKIE CUTTER ATTACK. As discussed in §II,
most HTTP software does not enforce proper TLS termination,
letting the attacker truncate a message at any TLS-fragment
boundary by closing the underlying TCP connection. If the
attacker controls the length of some of the contents of the
message, he may chose a specific truncation point. Although
this pattern has been exploited before to delete entire HTTP re-
quests or to truncate message bodies [13, 52], we demonstrate
new truncation attacks within headers of HTTP messages.

A network attacker can trigger a request with any path and
parameters (in fact, any website can trigger such requests to
any other website) and inject data into its Cookie header us-
ing forcing techniques, thus controlling the TLS fragmentation
of the request. In response headers, when a redirection occurs,

TABLE I. TLS TRUNCATION IN BROWSERS

In-Header Content-Length Missing last chunked
truncation ignored fragment ignored

Android 4.2.2 Browser 3 3 3
Android Chrome 27 3 3 3
Android Chrome 28 7 7 3
Android Firefox 24 7 3 3
Safari Mobile 7.0.2 3 3 3
Opera Classic 12.1 3 3 3

Internet Explorer 10 7 3 3

for instance after a successful login, the new URL given in the
Location header typically includes parameters taken from
the request (e.g., the page the user was trying to access before
logging in). Such parameters are often under attacker control,
and allow targeted truncation in response headers as well.
Truncating Responses Recall that browsers do not at-
tach cookies set with the secure flag to HTTP requests.
In the Set-Cookie header, however, the flag occurs af-
ter the cookie, so the attacker can selectively truncate it
and redirect the user to an unencrypted URL to recover
the cookie value. Concretely, consider a login form at
https://x.com/login?go=P that sets a session cookie
and redirects the user to https://x.com/P. The headers
of the response are as follows:

HTTP/1.1 302 Redirect
Location: https://x.com/P
Set-Cookie: SID=[AuthenticationToken]; secure
Content-Length: 0

The attacker can chose P such that the first TLS fragment ends
just before ‘;’ and close the connection before the second
fragment is sent, allowing the cookie to be stored without the
secure flag (and thus, visible to the attacker over HTTP). We
successfully mounted this attack against Google Accounts.

The attack is possible because some browsers, including
Chrome, Opera, and Safari, accepted incomplete HTTP re-
sponses (missing an empty line at the end of headers). We
reported the vulnerability to each vendor; their responses are
given in §IX-A. Table I summarizes the possible truncations in
current browsers; we focus on mobile versions because they are
more likely to connect to untrusted networks. While header-
truncation attacks have mostly been fixed, chunked-body-
truncation attacks remain possible on HTML and JavaScript.
Truncating Requests While most servers do not accept
truncated headers, some do accept a truncated body. In the
case of POST requests, typically used when submitting a form,
the parameters are sent in the body of the request. This is
most notably the case of requests sent through Apache SAPI
modules, such as PHP. The main difficulty when truncating a
POST request is to guess the length of the body parameters,
which may be difficult since they often contain user input.

Consider a scenario where the victim invites one of her
friend bob@domain.com on a social network where the
attacker wants to access her profile. The attacker registers the
domain domain.co and monitors the victim as she accesses
the invitation page (for instance, by inspecting the length of
the returned page). The query to truncate is of the form:

POST /invite.php HTTP/1.1

5

Host: socialnetwork.com
Content-Type: application/x-www-form-urlencoded
Cookie: SID=X; ForcedByAttacker=Z
Content-Length: 64

csrf_token=Y&invite=bob@domain.com

When the query is sent, the attacker truncates it such that the
invitation will be sent to bob@domain.co. The victim gets
a blank page due to the truncation, and may try the request
again. Meanwhile, the attacker receives credentials to access
the victim’s profile. We were able to mount this attack on a
popular social network that uses Apache and PHP.

III-C TLS CONNECTION INTEGRITY. Because most users
connect to websites using plain HTTP, even if a website
redirects all unencrypted connections to HTTPS, it is easy for
a man in the middle to forward HTTPS contents over HTTP
to the user, rewriting all links and pointers to encrypted pages.
This attack, called SSL stripping [37], is very popular thanks
to simple tools to mount it on public wireless networks.

To protect against SSL stripping, several browsers support
HTTP Strict Transport Security [30] (HSTS), which introduces
a Strict-Transport-Security header for websites to
indicate that the browser should always connect to its domain
over TLS, regardless of the port. The header includes a
max-age value, specifying how long this indication should
be enforced, and an optional includeSubDomains flag,
indicating that the policy also applies to all subdomains.

HSTS has several known weaknesses. The first problem
is bootstrapping: the user may use HTTP the first time it
connects to the website, before receiving the HSTS header in
the response. This bootstrapping problem is typically mitigated
by browsers that use a pre-registered HSTS domain list for
sensitive websites that wish to opt-in to this feature.

Second, HSTS preserves cookie integrity only when enabled
on the top level domain with the includeSubDomains flag,
and if the user visits this domain first [18]. This is an expensive
requirement for large websites, as it forces all contents for
the entire domain to be served over HTTPS. We found that
not a single website from the top 10,000 Alexa list is using
the includeSubDomains option on their top-level domain,
even though some are indeed using HSTS. Thus, in practice,
HSTS is not used to prevent cookie forcing attacks.

We found a new attack to bypass HSTS on some clients.
A network attacker can truncate the Strict-Transport-
Security header after the first digit of the max-age pa-
rameter. If the client accepts and processes this header, the
HSTS entry for that website will expire after at most ten
seconds, after which HTTP connections to the domain will
be allowed again, even if the domain has pre-registered to the
HSTS domain list on the browser.

Concretely, to attack x.com, the man-in-the-middle takes
any HTTP request for any server and redirects it to a page on
x.com that returns a parameter-dependent Location header
followed by the Strict-Transport-Security header.
We successfully tested the attack on Chrome, Opera, and
Safari. We further note that by using this attack first, a network
attacker can re-enable SSL stripping, cookie forcing, and the

Client C Server S

1. ClientHello(pvmax, cr, [KEX ALG1, . . .], [ENC ALG1, . . .])

2. ServerHello(pv , sr, sid , KEX ALG, ENC ALG)

3. ServerCertificate(certS , pkS)

4. ServerKeyExchange(kexS)

5. CertificateRequest

6. ServerHelloDone

7. ClientCertificate(certC , pkC)

8. ClientKeyExchange(kexC)

9. CertificateVerify(sign(log1, skC))

10. CCS

11. ClientFinished(verifydata(log2, ms))

12. CCS

13. ServerFinished(verifydata(log3, ms))

Client C Server S

1. ClientHello(pvmax, cr′, sid , [KEX ALG1, . . .], [ENC ALG1, . . .])

2. ServerHello(pv , sr′, sid , KEX ALG, ENC ALG)

3. CCS

4. ServerFinished(verifydata(log′
1, ms))

5. CCS

6. ClientFinished(verifydata(log′
2, ms))

Fig. 1. The TLS Handshake

cookie secure flag truncation attack above even on websites
that enable HSTS, defeating the purpose of this standard.

For websites that do not deploy HSTS, browser extensions
have been developed to force the use of HTTPS on a given
list of websites. However, it is worth noting that such ad
hoc mechanisms have their own flaws. For example, HTTPS
Everywhere [2] allows HTTP connections when the server port
is non-standard. Cookie policies ignore the port number, so
various attacks like cookie forcing remain possible.

IV. TLS PROTOCOL: CONNECTIONS, SESSIONS, EPOCHS

The TLS protocol is commonly used over TCP connec-
tions to provide confidentiality and integrity of bytestreams
exchanged between a client (C) and a server (S). We assume
some familiarity with TLS; we refer to the standard [23] for
the details and to other papers for a discussion of previous
proofs [35, 43] and attacks [40, 22]. Next, we recall the main
subprotocols of TLS and the attacks relevant to this paper.
(The online version discusses other prior attacks on handshake
integrity.)

IV-A FULL HANDSHAKE. Once a TCP connection has been
established between a client and a server, the TLS handshake
protocol begins. The goals of the handshake are to: authenti-
cate the server and (optionally) the client; negotiate protocol
versions, ciphersuites, and extensions; derive authenticated en-
cryption keys for the connection; and ensure agreement on all
negotiated parameters. Figure 1 shows the full handshake with
mutual authentication. (A ciphersuite selects a key exchange
mechanism KEX ALG for the handshake and an authenticated
encryption mechanism ENC ALG for the record protocol.)

First, the client sends a client hello message with a maxi-
mum protocol version pvmax, a random nonce cr, and a set
of proposed ciphersuites and extensions. The server chooses a
version pv, a ciphersuite, and a subset of these extensions, and
responds with its own nonce sr and session identifier sid . The
server then sends its X.509 certificate chain certS and public
key pkS . Depending on KEX ALG, it may send additional key

6

materials in a key exchange message kexS . It may also send a
certificate request message if it requires client authentication.

The client responds with its own certificate chain certC and
public key pkC (if required), followed by its own key exchange
message kexC . If the client sends its certificate, it also sends a
signed hash of the current log log1 (obtained by concatenating
messages 1–8) in a certificate verify message.

At this point in the protocol, both client and server can
compute a shared pre-master secret pms from kexC and kexS ,
use pms along with the nonces to derive a master secret ms ,
and use ms to derive keys for the connection and to verify
the handshake integrity. To complete the handshake, the client
signals a change of keys with a change cipher spec (CCS)
message followed by a finished message that contains the client
verify data cvd obtained by MACing the current handshake log
log2 with key ms . Similarly, the server sends its own CCS and
a finished message that contains the server verify data svd ,
obtained by MACing the whole handshake log3. (The CCS
messages are not included in the logs.)

When the client is not authenticated, messages 5, 7, 9
are omitted. When the server does not contribute to the key
exchange, e.g. with RSA, message 4 is omitted.
RSA Handshake If the key exchange in the negotiated ci-
phersuite is RSA, the calculations go as follows, where log1
is the log before message 9, log2 is the log before message 11,
and log3 is the log before message 13. (kexS is not used.)

pms = [pvmax]|[46 bytes randomly generated by C]
kexC = rsa(pkS , pms)

ms = prf(pms, “master secret”, cr|sr)
keys = prf(ms, “key expansion”, sr|cr)
cvd = prf(ms, “client finished”, hash(log2))

svd = prf(ms, “server finished”, hash(log3))

DHE Handshake If the negotiated key exchange is ephemeral
Diffie-Hellman (DHE), then S chooses group parameters (p, g)
and a fresh key pair (KS , g

KS); it sends (p, g, gKS) in kexS ,
signed along with cr and sr with its private key skS . The
client generates its own key pair (KC , g

KC) and responds with
kexC = gKC . Both parties compute pms = gKC∗KS . The rest
of the computations are the same.

kexS = signed(skS , [cr, sr, p, g, g
KS mod p])

kexC = gKC mod p

pms = gKC∗KS mod p (with leading 0s stripped)

Other variations Besides RSA and DHE, mainstream TLS
implementations support variations of the Diffie-Hellman key
exchange implemented using elliptic curves. The handshake
for these is similar to DHE, but with some notable dif-
ferences. For example, most ECDHE implementations only
accept named curves within a fixed set, whereas DHE allows
the server to choose arbitrary DH group parameters.

Other key exchanges are less common on the web but
useful in other applications. In TLS-PSK, the client and server
authenticate one another using a pre-shared key instead of cer-
tificates. In TLS-SRP, the client uses a low-entropy password

Client C Server S

1. ClientHello(pvmax, cr, [KEX ALG1, . . .], [ENC ALG1, . . .])

2. ServerHello(pv , sr, sid , KEX ALG, ENC ALG)

3. ServerCertificate(certS , pkS)

4. ServerKeyExchange(kexS)

5. CertificateRequest

6. ServerHelloDone

7. ClientCertificate(certC , pkC)

8. ClientKeyExchange(kexC)

9. CertificateVerify(sign(log1, skC))

10. CCS

11. ClientFinished(verifydata(log2, ms))

12. CCS

13. ServerFinished(verifydata(log3, ms))

Client C Server S

1. ClientHello(pvmax, cr′, sid , [KEX ALG1, . . .], [ENC ALG1, . . .])

2. ServerHello(pv , sr′, sid , KEX ALG, ENC ALG)

3. CCS

4. ServerFinished(verifydata(log′
1, ms))

5. CCS

6. ClientFinished(verifydata(log′
2, ms))

Fig. 2. Abbreviated TLS Handshake

instead of a certificate. In DH anon, both client and server
remain anonymous, so the connection is protected from passive
eavesdroppers but not from man-in-the-middle attackers.

IV-B THE RECORD PROTOCOL. Once established, a TLS
connection provides two independent channels, one in each
direction; the record protocol protects data on these two
channels, using the authenticated-encryption scheme and keys
provided by the handshake. Application data is split into a
stream of fragments that are delivered in-order. There is no
correlation (at the TLS level) between the two directions.
When the client or server wishes to terminate the connection, it
sends a close_notify alert to signal the end of its writing
stream, and it may wait for the peer’s close_notify before
closing the connection. If both peers perform this graceful
closure, they can both be sure that they received all data.
However, this is seldom the case in practice.

There are several attacks on the confidentiality of the record
protocol [e.g. 5]; attacks on integrity are less common [e.g. 15].

IV-C SESSION RESUMPTION. Full handshakes involve mul-
tiple round-trips, public key operations, and (possibly)
certificate-revocation checks, increasing latency and server
load [54]. In addition, abbreviated handshakes enable clients
and servers that have already established a session to quickly
set up new connections. Instead of establishing a new master
secret, both parties reuse the master secret from that recent
session (cached on both ends), as shown in Figure 2.

The format of the cached session data depends on the
TLS implementation, but [50] recommends that it contains
at least the master secret, protocol version, ciphersuite, and
compression method, along with any certificate.

The client sends a client hello, requesting the server to
resume the session sid , with a new client nonce cr′. If the
server has cached this session, it may then respond with a
server hello with a new server nonce sr′ and the same sid
and algorithms as in the initial handshake. The server then
immediately sends its CCS and finished message, computed as
a MAC for the abbreviated handshake log. The client responds
with its own CCS and finished message, computed as a MAC
of the whole resumption log. The computation of keys and
verify data are as follows, where log′1 consists of the messages
1 and 2, while log′2 includes 1, 2 and 4:

7

ms = [cached for (S, sid)]
keys = prf(ms, “key expansion”, sr′|cr′)
svd = prf(ms, “server finished′′, hash(log′1))

cvd = prf(ms, “client finished′′, hash(log′2))

The completion of an abbreviated handshake implicitly
confirms to each participant that they share the same session
master secret. Hence, if both peers are honest, they must
have matching session parameters—those negotiated in the
initial handshake. Because of its efficiency, resumption is
aggressively used on TLS connections. It is supported by
default in all major web browsers and web servers. A recent
TLS extension enables servers to store their cached sessions
at the client within encrypted tickets [50]; this mechanism
makes it possible for clients to maintain long-lived sessions
with stateless server farms, at little cost to the servers.

We use the term session resumption when the same TLS
session is used on multiple connections, but the abbreviated
handshake may also be used on an existing TLS connection to
refresh keys and reset sequence numbers. At the end of each
handshake, we say that the connection enters a new epoch.

IV-D RENEGOTIATION: CHANGING EPOCHS. A client or a
server may request a new handshake on an established TLS
connection, e.g. to renegotiate the session parameters. The
handshake proceeds as described above, except that its mes-
sages are exchanged on the encrypted TLS connection. When
the handshake completes, both parties share a new session,
and their connection enters a new epoch, switching to the keys
derived from the new session.

There are many reasons why an application may want to
renegotiate a TLS session when it already has a working TLS
connection. The first is client authentication. On some servers,
client authentication is required only when accessing protected
resources. For instance, Apache triggers renegotiation and
requires a client certificate on first access to a protected
directory. This design improves user experience and helps
protect privacy by requesting authentication only when needed,
and prevents the client certificate being sent in the clear during
the initial handshake. Other reasons may be to upgrade the
ciphersuite or replace an expiring certificate [49, §5]. Even in
this case, the server may need to provide a new certificate that
supports, say, ECDSA signing instead of RSA. Consequently,
in many renegotiations, the client and server certificates and
identities after renegotiation may differ from those of the pre-
vious handshake. Without additional protections, such identity
changes can lead to impersonation attacks.

Renegotiation Attack Protecting the renegotiation under the
keys of the previous handshake is not enough to prevent man-
in-the-middle attacks. An active network attacker can intercept
an initial handshake from a client to a server and forward it as
a renegotiation within an existing TLS connection between
the attacker and the server. As a result, any data that the
attacker sent before the renegotiation gets attributed to the
client, leading to a powerful impersonation attack [45].

In response to this attack, a new ‘mandatory’ TLS extension
has been proposed and deployed for all versions of TLS [49].

This extension includes the verify data of the previous hand-
shake within the client and server hello messages of the
renegotiation handshake, thereby cryptographically binding the
two handshakes (and, recursively, any preceding handshake
on the same connection). As a result, as each handshake
completes, both peers can be confident that they agree on all
epochs on their connection. Informally, the principals at each
endpoint must remain the same, even if the certificates change.

As shown in §V, this countermeasure still does not suffice
to eliminate renegotiation attacks across several connections.

IV-E IMPLEMENTATIONS AND APIS. There are several pop-
ular implementations of TLS, including OpenSSL, GnuTLS,
NSS, JSSE, and SChannel. Here, we briefly discuss the miTLS
verified reference implementation [15], whose API is distinc-
tive in the detailed connection information that it offers to its
applications. As such, miTLS is an ideal experimental tool on
which to evaluate attacks and implement countermeasures.

The miTLS API consists of functions to initiate and accept
connections, send and receive data, and instigate session re-
sumption, re-keying, and renegotiation. Each of these functions
returns a connection handle and a ConnectionInfo structure,
which details the current epoch in each direction (they can
differ). For each epoch, it includes the nonces and verify data
and points to a SessionInfo structure with the epoch’s session
parameters (including ciphersuites and peer identities). It also
points to the previous epochs on the connection (if any).

The API encodes the security assumptions and guarantees
of TLS as pre- and post-conditions on the connection state.
The application cannot send or receive data unless the con-
nection is in the Open state, which means that a handshake
has successfully completed with an authorized peer. When
a handshake completes at an endpoint, the API guarantees
that, if all the principals mentioned in the ConnectionInfo
are honest, then there is exactly one other endpoint that has
a matching ConnectionInfo and keys. Every application data
fragment sent or received is indexed by the epoch it was sent
on, which means that miTLS will never confuse or concatenate
two data fragments that were received on different epochs; it
is left to the application to decide whether to combine them. If
the connection uses the renegotiation indication extension, the
application gets an additional guarantee that the new epoch is
linked to the old epoch. If at any point in a connection, miTLS
receives a fatal alert or raises an error, the connection is no
longer usable for reading or writing data. If the connection is
gracefully closed, miTLS guarantees that each endpoint has
received the entire data stream sent by its peer. Otherwise, it
only guarantees that a prefix of the stream has been received.

V. A MAN-IN-THE-MIDDLE TLS PROXY SERVER

Consider the following scenario. An honest TLS client C ac-
cidentally (or willingly) connects to a TLS server A controlled
by the attacker. A then connects to an honest TLS server S,
and acts as a man-in-the-middle proxy between C and S. If
C correctly validates A’s certificate and if the user at C is
observant, she will know that she is speaking with A, and will
not send any sensitive data meant for S. To fool C, A would
need to obtain a certificate in S’s name, or to steal S’s private

8

key. While such events can be interesting to consider [19, 53],
we do not address such powerful attackers in this paper.

In this scenario, one may think that the best A can achieve
is to be an application-level proxy, ferrying data between C
and S over independent TLS connections. However, what if A
could establish the same keys on both connections, so that C
uses a key that it believes it shares only with A, while it is in
fact also used between A and S? Now, A can inject data on
both connections, then step out of the way, allowing C and S
to continue talking directly to one another, with A no longer in
the middle. This makes the man-in-the-middle attack difficult
to detect, even with sophisticated timing measurements [9].

The possibility of this kind of key synchronization is perhaps
surprising, but not new. In the cryptographic key-exchange
literature, it is called an unknown key-share attack [17, 34],
whereby two honest parties share a key but one of them does
not realize with whom it shares its key; their mutual belief
in the shared secret is violated [55]. By themselves, these
theoretical attacks do not break the basic authentication or
confidentiality goals of key exchange. In Abadi’s terminol-
ogy [3], they do not disrupt any access control goals based on
responsibility, but they enable an attacker to take credit for an
honest principal’s message. So, if the application-level protocol
does not reliably confirm both peers’ identities, then more
serious attacks become possible [36], as we will demonstrate
in §VI.

In the rest of this section, we show how a malicious server A
can synchronize TLS keys with C and S. We exploit three
independent weaknesses in the RSA handshake, the DHE
handshake, and the abbreviated handshake, to build this mali-
cious server. We do not make any assumption about application
behavior, and use only standard mechanisms implemented by
mainstream TLS libraries.

V-A SYNCHRONIZING RSA. Suppose C sends a client hello
to A offering an RSA ciphersuite. A then forwards the client
hello to S. When S responds with the server hello, A forwards
it to C. Hence, the client and server nonces cr , sr and session
identifier sid are the same for both connections.

Next, when S sends its certificate certS to A, A instead
sends its own certificate certA to C. Now, C generates a pre-
master secret pms , encrypts it under pkA, and sends it to A.
A decrypts pms , re-encrypts it under pkS , and sends it to S.
Hence, both connections have the same pms and (since the
nonces are equal) the same master secret and connection keys,
all of which are now shared between C, S, and A. Finally,
A completes the handshake on both connections, using ms to
compute correct verify data. The messages tampered by A are
illustrated in Figure 3 (Connection 1).

At this point, C and S cache the same session that they both
associate with A (as represented by certA on C, and optionally,
A’s client certificate on S). The new epochs on the two
connections are distinguishable only by the client and server
verify data, which differ on the two connections. However,
messages from one connection can be freely forwarded to the
other, since the keys match. Consequently, if A stepped out of
the way, C and S can continue exchanging messages without
realizing that the principal on the other end has changed.

User

Client C

Attacker

Server A

Target

Server S

cr cr

sr, sid , certS , kexSsr, sid , certA, kexA

kexC , cvdCA kexC , cvdAS

svdASsvdCA

New session:
sid ,ms, anon → certA

Knows:
sid ,ms

New session:
sid ,ms, anon → certS

New epoch:
sid , keys, cvdCA, svdCA

Knows:
sid , keys

New epoch:
sid , keys, cvdAS , svdAS

Connection 1: Full Handshake

User

Client C

Attacker

Server A

Target

Server S

cr′, sid cr′, sid

sr′, sid , svd ′sr′, sid , svd ′

cvd ′ cvd ′

New epoch:
sid , keys ′, cvd ′, svd ′

Knows:
sid , keys ′

New epoch:
sid , keys ′, cvd ′, svd ′

AppDataAC AppDataAS

cr′′, cvd ′ cr′′, cvd ′

sr′′, sid ′, cvd ′, svd ′, certS , kex ′
Ssr′′, sid ′, cvd ′, svd ′, certS , kex ′

S

certC , kex ′
C , cvd ′′ certC , kex ′

C , cvd ′′

svd ′′svd ′′

New session:
sid ′,ms′, certC → certS

New session:
sid ′,ms′, certC → certS

New epoch:
sid ′, keys ′′, cvd ′′, svd ′′

Does not know:
ms ′, keys ′′

New epoch:
sid ′, keys ′′, cvd ′′, svd ′′

AppDataCS

AppDataSC

Connection 2: Session Resumption and Renegotiation

Fig. 3. Triple handshake attack by a malicious server on client-authenticated
TLS renegotiation: (1) RSA/DHE full handshake, (2) abbreviated handshake
for session resumption, (3) secure (RFC 5746 [49]) renegotiation handshake

Variants and Mitigations The above trace is robust to vari-
ations in the key exchange. If S demands a client certificate,
A can provide its own certificate, and this does not affect the
synchronization of the master secret or connection keys. If both
C and S support RSA but prefer a different key exchange, say
ECDHE, A can still force them both to use RSA by offering
only RSA in its client and server hellos.

The RSA key exchange does not ensure different keys on
different connections, and there is no standard mitigations
that implementations can employ to prevent it. This behavior
would not surprise a cryptographer or protocol expert, since
only C contributes to the key exchange. However, it is only
occasionally mentioned in protocol specifications [48, §5] and
continues to surprise protocol designers. As shown in §VI, such
connection synchronizations can defeat the man-in-the-middle
protection used in tunneled protocols like PEAP.

V-B SYNCHRONIZING DHE. Suppose that C (or S) refuses
RSA ciphersuites, but accept some DHE ciphersuite. We show

9

that A can still synchronize the two connections, because
the DHE key exchange allows the server to pick and sign
arbitrary Diffie-Hellman group parameters, and any client that
accepts the server certificate and signature implicitly trusts
those parameters.

In this scenario, A substitutes its own certificate for S’s (as
with RSA), then changes the Diffie-Hellman group parameters
in the server key exchange message, and finally changes the
client’s public key in the client key exchange message.

Suppose S offers a prime p, generator g, and public key
PS = gKS mod p. A replaces p with the non-prime value
p′ = PS(PS−1) and signs the parameters with its own private
key. When C sends its own key exchange message with public
key PC = gKC modp′, the attacker replaces it with the public
key g and sends it to S. Our choice of p′ ensures that PS has
order 1 in the group Z∗p′ , or equivalently ∀x, P x

S = PSmodp′.
Other values of the form p′ = q(PS−1) also lead to PS having
a low order in Z∗p′ . Upon receiving this message, C computes

pms = PKC

S mod PS(PS − 1)

= PS mod PS(PS − 1)

= PS (with leading 0s stripped)

while S computes pms = gKS mod p = PS . Finally, both
connections share the same pms , ms, and derived keys.
Variants and Mitigations The authenticated Diffie-Hellman
key exchange is not intrinsically vulnerable to a man-in-the-
middle, as long as both parties use the same, well chosen
group. The key to this attack is that the attacker is able to make
C accept a group with a non-prime order. In fact, p′ above is
always even (and may cause errors with implementations that
rely on Montgomery reduction for modular exponentiation) but
it is easy to find odd non-primes that work just as well.

The attack fails if C checks that p′ is prime. Yet, none of
the mainstream TLS implementations perform a full primality
check because it is deemed too expensive. A probabilistic
primality check could help, but may not guarantee that the
attacker cannot find a p′ that defeats it. An alternative mitiga-
tion would be to standardize a few known good Diffie-Hellman
groups for use in TLS. Indeed, this is the approach taken in
protocols like IKEv2 and in TLS variants like SRP.

Even when clients and servers use known groups, care must
be taken to validate the public key received from the peer.
Otherwise, they may become vulnerable to small subgroup
attacks [see e.g. 7, 46] which have been exploited in previous
TLS attacks [56, 38]. Barker et al. [11] define a procedure
for checking public keys, but we found that many TLS
implementations do not implement it. We analyzed TLS clients
and servers to check whether they accept degenerate public
keys (with small orders) like 0, 1, and −1; these keys always
lead to pms ∈ {0, 1,−1}. While 0 and 1 are rejected by
most implementation (to mitigate [38]), we found that NSS,
SChannel, and JSSE do accept −1. On the web, we found
that all web browsers and about 12% of DHE-enabled servers
of the top 10,000 Alexa list also accept −1. Such clients and
servers are vulnerable to our key synchronization attack, since
the pms can be forced to be the same on both connections

(with high probability), even if these clients and servers only
accept known primes and correctly sample their keys.

The elliptic curve version of DHE (ECDHE) allows servers
to offer arbitrary curves, and so theoretically suffers from the
same attack, but all the TLS implementations we tested only
support well-known named curves standardized by NIST.

V-C SYNCHRONIZING ABBREVIATED HANDSHAKES. Sup-
pose C, A, and S have synchronized sessions and connections,
as described above. If C attempts to resume the session with A
over a new connection, A can then synchronize this new
connection with a new connection to S. In fact, abbreviated
handshakes are easier to synchronize than full handshakes.

When C sends its client hello requesting session resumption
on a new connection, A simply forwards the request to S, and
forwards S’s response to C unchanged. C and S complete
the handshake through A, re-using the master secret known
to C, S, and A, as shown in the top half of Connection 2 in
Figure 3. The resulting epochs on the two connections have the
same keys, also shared with A. The new epochs are, in fact,
more synchronized than the epochs on the original connection:
the client and server verify data on these epochs are also the
same. Hence, after resumption, the only noticeable difference
between the two connections is that the C-A connection has
a session with server identity certA while the A-S connection
has a session with server identity certS . All other differences
have been erased. This is important for the attacks in §VI.

The ease with which resumed sessions can be synchronized
exposes the weak authentication guarantees of the abbreviated
handshake. It only ensures that the client and server share
the same master secret, whereas applications may (and do)
assume that they share the same session, which we show is not
the case. To obtain stronger guarantees from this handshake,
in §VII we propose a TLS extension, similar to [49], that links
the resumption handshake to the original session.

VI. ATTACKS ON CLIENT AUTHENTICATION OVER TLS

TLS is most commonly used in the anonymous-client mode,
where only the server is authenticated. Consequently, appli-
cations often deploy their own mechanisms and protocols to
authenticate users after the TLS handshake has finished.

Previous work shows that layering a client authentication
protocol within a server-authenticated secure channel is vul-
nerable to generic man-in-the-middle attacks [8, 41]. The TLS
renegotiation attack is also an instance of this pattern [45].
If an attacker A can see application-level protocol messages
between C and S, it can tunnel these messages through its
own connection with S, thereby impersonating C at S.

This attack is possible in three scenarios. First, if the
client C uses the same application-level credentials on en-
crypted and unencrypted channels. Second, if C uses the
same credentials on different servers, one of which could be
malicious. Third, if C fails to correctly validate the server
identity and confuses a malicious server A with an honest
server S. In all these cases, the application-level protocol
should guarantee that the credentials released by C to A cannot
not be used by A at S.

10

A common pattern to enforce this guarantee is to crypto-
graphically bind the (inner) application authentication to the
(outer) underlying TLS channel [8, 6, 49]. This binding helps
only inasmuch as the inner protocol employs strong keys
(public or secret) or a passphrase-based challenge-response
scheme resistant to dictionary attacks. Bearer tokens cannot
be protected. In this section, we discuss four such binding
mechanisms, and show how to break their guarantees using
the synchronizing TLS proxy of §V.

VI-A THE TRIPLE HANDSHAKE ATTACK. Suppose A has an
anonymous-client TLS connection to S. When A tries to access
a user-protected resource, S triggers a renegotiation to require
A to authenticate as a valid user, with a client certificate or
some other credential (PSK, SRP, etc.). This pattern is enabled,
for example, on the Apache web server, when a client tries to
access a protected directory.

A wants to authenticate to S as C (without C’s credentials).
More generally, even if A has previously authenticated to S,
it wants to change its authenticated identity to C.

Before explaining our attack, it is useful to recall the
2009 renegotiation attack [45] and countermeasure [49], which
cryptographically binds each handshake on a connection to
the preceding one, by passing the verify data of the previous
handshake (if there was one) in the client and server hellos of
the new handshake. Therefore, if A initiates a full handshake
with S, but later tries to forward C’s handshake to S as a
renegotiation, the verify data in C’s hello would not match A’s
handshake, prompting the server to reject the renegotiation.

What if a session is resumed on a new connection? The
first handshake now is an abbreviated handshake; it only
authenticates the session master secret, not the whole session.
Thus, the renegotiation countermeasure does nothing to bind
the new connection to the old session. This re-enables the man-
in-the-middle impersonation attack it was meant to fix.

Assume the adversary A has set up synchronized sessions
and connections with C and S. If C resumes the session on a
new connection, A can resume the same session on a new
connection to S. As discussed in §V-C, at the end of the
abbreviated handshake, the verify data on both connections is
the same. Now, if C or S initiates a client-authenticated TLS
renegotiation, A can simply forward all messages from C to S
and back, making no changes. The client and server hellos will
refer to the verify data from the abbreviated handshake and
thus be accepted by both parties. This triple handshake across
two connections is depicted in Figure 3.

At the end of the renegotiation, from TLS’s viewpoint, C
and S share a new mutually-authenticated session. A does not
have the keys to this new session, but it may have injected
data in both directions before the renegotiation, and this data
may now be mistakenly attributed by C to S, and vice versa.
In other words, the TLS peer on the connection has changed,
and the application may not realize it, defeating the purpose
of the secure renegotiation extension.
Preconditions and Variations The attack above works re-
gardless of whether the renegotiation uses client certificates,
PSK, or SRP to authenticate the client, and even if the initial
handshake also used client authentication.

The main precondition is that the client be willing to use the
same authentication credentials on A and S. This is reasonable
for public-key certificates, which are often used as universal
identity assertions when issued by trusted CAs. For SRP or
PSK credentials, this may not seem as likely, but these key
exchanges are typically used to provide both server and client
authentication, and hence, they both offer several ciphersuites
that do not use server certificates at all.

The second precondition is that the client and server should
be willing to accept new mutual identities during renegotiation.
Accepting a change of client identity (or client authentication
on an anonymous session) is one of the purposes of renegoti-
ation, but accepting a change of server may seem unusual. We
experimentally tested a wide variety of TLS client applications,
including mainstream browsers, popular HTTPS libraries such
as CURL, serf, and neon, version control systems, VPN clients,
mail clients, etc. We found that a vast majority of them silently
accept a change of server identity during renegotiation, and
thus are vulnerable to our impersonation attack.

Why does this not contradict proofs of the TLS handshake?
Most proofs [e.g. 35, 32] ignore renegotiation and resumption;
[14] supports resumption but not renegotiation; [29] considers
renegotiation but not resumption; [15] supports both and relies
on the application to correctly handle epoch changes.
Web Exploit and Mitigation As a concrete example, we
implemented the above attack as a web server acting as a
synchronizing proxy between a browser C and an honest
website S. After proxying the initial handshake and session
resumption, A can tamper with the connection in many ways,
before instigating renegotiation:
• A can send a POST message to S which will get

subsequently attributed to C after renegotiation.
• A can send a page with JavaScript to C, so that the script

gets executed later, in the client-authenticated session.
• A can source a client-authenticated page from S in one

frame at C while reading its contents from another frame
sourced at A, bypassing the same origin policy (XSS).

All of these attacks can be used to subvert both user authentica-
tion on the server and same-origin protections on the browser.
Protections like CSRF tokens and Content Security Policy do
not help since the page’s origin is no longer reliable.

We have disclosed this vulnerability to a number of browser
vendors. The easiest mitigation is for web browsers to refuse
a change of server identity during renegotiation (since their
UI can hardly convey a HTTPS mashup of several origins);
some of them have already made this change in response to
our report. For web servers and other HTTPS applications,
we believe that restricting peer certificate changes would be a
good default as well, with a careful review of the UI and API
design in the cases when the identity is expected to change.
VI-B BREAKING COMPOUND AUTHENTICATION IN TUN-
NELED PROTOCOLS. Wireless authentication protocols such
as EAP-TLS [51], PEAP [42] and EAP-TTLS [27] are par-
ticularly susceptible to man-in-the-middle attacks even over
TLS [8] because of the ease with which other wireless
devices and rogue access points can fool naive clients into
connecting to them [19]. To protect against such attacks,

11

some of these protocols adopted new compound authentication
mechanisms [44] that cryptographically bind the inner EAP
authentication protocol with the outer TLS tunnel.

In PEAP, when the inner protocol is MSChapv2 [1] for
example, the inner protocol generates a session key (ISK)
that is combined with a tunnel key (TK) generated from the
outer TLS connection’s master secret (and client and server
randoms) to derive a compound authentication key (CMK) and
encryption key (CSK) for subsequent use between the wireless
device and access point. The idea is that these keys will only
be known to devices that participated both in the outer TLS
handshake and the inner EAP authentication.

TK = prf(ms, “client EAP encryption”, cr|sr)
CMK|CSK = prf ′(TK, ISK)

PEAP also features fast reconnect, an API for TLS session
resumption. As it moves from one wireless access point to
another and needs to reconnect, the client simply resumes its
TLS session and skips the inner authentication protocol. In
this case, ISK is set to 0s so the compound authentication
and encryption keys depend only on TK. This mechanism
presumes that the tunnel key is unique on every connection;
our synchronizing TLS proxy breaks this assumption and leads
to a new attack.

As usual, A sets up synchronized connections with C and S
and forwards the untampered MSChapv2 exchange to let C
authenticate to S, negotiate ISK, combine it with TK, and derive
CMK and CSK. Since A only knows TK, he cannot read or tamper
with any messages after the authentication. Nonetheless, if A
uses fast reconnect to resume the TLS session with S, the inner
EAP authentication is skipped, and the new compound keys
are only derived from TK. Yet, S still associates the connection
with C, resulting in a complete impersonation by A, without
any involvement from C.
Preconditions and Mitigations To make the attack work,
the malicious access point must convince the user to trust its
certificate, which can be achieved in a number of cases [19].

The mitigation for tunneled protocols is not straightforward.
At the TLS level, a more general mitigation would be to
change the master secret computation, as we discuss in §VII. In
PEAP, one possibility is to change the tunnel key computation
to include the server’s identity, represented by the server’s
certificate or its hash:

TK = prf(ms, “client EAP encryption”, cr|sr|certS)
VI-C BREAKING TLS CHANNEL BINDINGS. Channel bind-
ings [57] are a generic protocol composition mechanism,
whereby a transport-level cryptographic protocol such as IPsec,
SSH, or TLS can expose specific session and connection
parameters to applications, most notably to bind authentication
mechanisms to the underlying secure channel. Their stated
goal is to establish that “no man-in-the-middle exists between
two end-points that have been authenticated at one network
layer but are using a secure channel at a lower network
layer”. TLS implementations expose three channel bindings to
applications [6]; we consider one of them here and another
(tls-server-end-point) in the online material. The

‘tls-unique’ channel binding for a given TLS connection
is defined as the first finished message in the most recent
handshake on the connection. If the most recent handshake
is a full handshake, this value is the client verify data cvd ;
if it is an abbreviated handshake, it is the server verify data
svd . The intent is that tls-unique be a unique representative
of the current epoch, shared only between the two peers who
established the epoch. Our synchronized session resumption
breaks it by establishing different connections with honest
peers that have the same tls-unique value.

To see how this can be concretely exploited, consider the
SCRAM-SHA-1-PLUS protocol [39] used in the SASL and
GSS-API families of authentication mechanisms in a variety
of applications like messaging (XMPP), mail (SMTP, IMAP),
and directory services (LDAP). SCRAM is a challenge-
response protocol where the client and server store different
keys (CKp, SKp) derived from a user’s password (p), and use
them to authenticate one another. When used over TLS,
the first two messages contain client and server nonces and
the tls-unique value for the underlying TLS connection.
The last two messages contain MACs over these values, for
authentication and channel binding:

1. C → S : u, cn, tls-unique
2. S → C : cn, sn, s, i
3. C → S : cn, sn, ClientProof(CKp, log1,2,3)
4. C → S : cn, sn, ServerSignature(SKp, log1,2,3)

In our attack, C establishes, then resumes a session with A,
who synchronizes a connection with S to have the same
tls-unique value. A then forwards the SCRAM messages
between C and S. Since the server identity is not part of
the exchange and the tls-unique values match, the SCRAM
authentication succeeds, enabling A to impersonate C at S.

A precondition for the attack is that C be willing to accept
A’s certificate, and this is already considered a security risk
for SCRAM-like protocols, since they then become vulnerable
to dictionary attacks. However, the tls-unique protection is
meant to protect users from impersonation even if the TLS
protocol uses an anonymous key exchange [39, §9]. Our attack
shows that this is not the case.

To prevent this attack without impacting TLS, we recom-
mend significant changes to the specification of tls-unique
in §VII. With such modifications, tls-unique may possibly
become truly unique across connections.
VI-D BREAKING CHANNEL-BOUND TOKENS ON THE
WEB. Channel ID is a TLS extension [10], implemented by
Chrome and all Google servers, that aims to bind web au-
thentication tokens such as cookies to a cryptographic channel
between a client and a server, without the need for client certifi-
cates. A channel can be long-lived (at least as long as cookies)
and consists of many TLS sessions and connections. Channel
ID is a follow-up to the previously published origin-bound
certificates proposal [24], which was considered impractical
to implement and deploy.

A TLS client that supports Channel ID generates and
stores a public-private elliptic curve key pair (pk cid,S , sk cid,S)
associated to each domain name S that it connects to. The TLS

12

handshake is modified so that, instead of a client certificate
and certificate verify message, the client sends a Channel ID
authentication message that contains the public key (a point
on the P-256 elliptic curve) and an ECDSA signature of the
handshake log using the private key. To protect the privacy
of the client’s public key from passive eavesdroppers, the
authentication message is sent encrypted after the client’s CCS
message, but this does not affect its authentication properties.

The main protocol goal is that, unlike bearer tokens, the
client’s Channel ID cannot be used by a malicious server A
to impersonate the client on a different server S, even if C
accidentally connects to A using its Channel ID for S. In
fact, this should be impossible even if A obtains the private
key of a certificate valid for S, provided Channel ID is only
enabled with forward-secret ciphersuites such as DHE [10,
§6]. Consequently, an application that binds its tokens to the
Channel ID make them unusable on a different TLS client
without the associated private key. A typical example is for S
to create a cookie by signing the session identifier with the
Channel ID public key:

c = signed(skS , [sid , pk cid])

S would then only accept this cookie over a TLS connection
authenticated by sk cid, so stealing the cookie is of no use.
Attack and Mitigation The security of Channel ID relies on
the uniqueness of the handshake log (logc). If the attacker A
can create a session to S with the same log, it can reuse C’s
Channel ID signature to impersonate C at S. Our synchroniz-
ing proxy achieves exactly this feat after resumption.

Suppose C establishes, then resumes a TLS session with A.
A can synchronize a connection to S such that the log
in the resumption handshake is identical between C-A and
A-S. Hence, the Channel ID signature on the resumption
handshake can be replayed to S, allowing A to successfully
impersonate C. Henceforth, A can obtain S’s channel-bound
cookies meant for C and freely use them on this connection.
This attack is well within the threat model of Channel ID. The
Channel ID authors promptly responded to our report and in
response, the protocol specification is being revised to include
the hash of the original handshake in the Channel ID signature
of abbreviated handshakes.

VII. COUNTERMEASURES

We propose several countermeasures at the TLS level that
prevent our man-in-the-middle attacks at their source with
few or no changes required to application-level mechanisms.
The ideas behind these proposals emerged from discussions
with various implementors and protocol experts and we are
cautiously optimistic about their adoption. Since new protocol
extensions and features can take a long time to propagate, we
also discuss short-term mitigations for various applications.
VII-A A NEW CHANNEL BINDING. In §V-C and §VI-C, we
found that neither the session id, nor the master secret, nor the
tls-unique channel binding served as unique representatives
for a TLS session. Hence, we propose a new TLS channel
binding, called tls-session-hash, that captures all the
negotiated parameters for a session.

We define tls-session-hash for a given TLS session as
the hash of the handshake messages up to and including the
client key exchange message in the original handshake that
created the session. The hash function used depends on the
protocol version. For TLS 1.2, this is the hash function in
the ciphersuite. For SSL3 and earlier versions of TLS, this is
the concatenation of MD5 and SHA1 hashes. We require that
TLS implementations compute and store tls-session-hash
within its session structure and expose it to implementations.
Why this definition? We only hash messages up to the
client key exchange, because at this point the negotiation is
complete and all the inputs to the master secret are available,
so most TLS implementations will create (but not cache) the
session structure. Notably, the hashed log includes the nonces,
the ciphersuite, key exchange messages, client and server
certificates, and any identities passed in protocol extensions.

Our definition of the hash functions matches those used
for the finished messages in SSL3 and TLS 1.0–1.2; hence,
implementations already keep a running hash of the log and
we just re-use its value. Implementing this channel binding
increases the cached session size by a single hash, and has no
performance impact.

We define a new hash value instead of reusing the client or
server verify data for three reasons. (1) It is compatible with
stateless servers [50], which must send the session ticket before
the server finished message, so the server verify data is not
available yet. (2) Being longer than the verify data, the session
hash offers stronger collision resistance. While collisions may
be less problematic for (the usually few) renegotiations on a
single connection, a session can be long-lived and frequently
resumed. (3) We could have reused the input to the client
verify data, but it would not offer any clear advantages, and our
current definition is more suitable for our proposed extensions.
Recommended Usage We recommend that protocols such as
SCRAM use tls-session-hash rather than tls-unique
for channel binding. To fix Channel ID, we recommend
that the signature on abbreviated handshakes include the
tls-session-hash of the resumed session. To derive ap-
plication keys from the master secret, like in PEAP, we
recommend adding tls-session-hash to the PRF.

VII-B CONTEXT BINDING FOR MASTER SECRETS. We pro-
pose a new extension for all versions of TLS and DTLS that
causes negotiated session parameters to be included in the
master secret computation, following the principle of context
binding [21], whereby computed keys should be usage-specific.

As usual, the extension is signaled in the client and server
hello messages; if both peers support it, the handshake pro-
ceeds as usual, except that the master secret is computed as:

ms = prf(pms, “extended master secret”,

tls-session-hash)

The inclusion of tls-session-hash, instead of just the
pair of nonces, ensures that the resulting master secret depends
on all the negotiated session parameters. The master secret im-
plicitly authenticates these parameters, and different sessions
will have different master secrets, foiling our attacks.

13

We find this solution elegant since it protects all TLS
handshake modes (including RSA and DHE) and protocol
versions, and allows application-level protocols like PEAP to
safely use the TLS master-secret without any changes. The
idea of including additional materials in the master secret
computation is not new [21, 31, 3] but our proposal merits
more detailed analysis, which we leave for future work.

VII-C SECURE RESUMPTION INDICATION. We propose a
mandatory extension for all versions of TLS and DTLS that
complements the renegotiation indication extension [49] by
also protecting session resumption across multiple connections.

As in [49], the extension is signaled in the client and
server hello messages (see §IV-C), but only when propos-
ing and accepting resumption, respectively. It contains the
tls-session-hash value of the session being resumed.
Peers supporting the extension must check that this value
matches the one recorded in their locally stored session before
proceeding with the abbreviated handshake. The exchanged
session hashes are authenticated by the master secret in the
finished messages of the resumption, cryptographically binding
the new connection to the resumed session. If one of the peers
does not support the extension, the other should refuse session
resumption and may instead offer a full handshake.

VII-D SUMMARY OF MITIGATIONS. We implemented the
session hash channel binding and our two extensions as patches
to OpenSSL and miTLS, and we tested their interoperability
for all versions of TLS and DTLS. Our patches fit well into
the code structure and have no visible effect on performance.

Applications that rely on existing TLS APIs can mitigate the
attacks of this paper by following some conservative design
principles, at some cost to their functionality.

1) Do not allow the peer to renegotiate its certificate.
2) Do not use tls-unique after session resumption .
3) To derive application keys from the TLS master secret,

hash the session’s certificates into the derivation.
4) Buffer application data until its semantics is unambigu-

ous; discard it if the TLS connection is torn down.
5) Do not share secret cookies between HTTP and HTTPS

connections, or between different origins.

VIII. VERIFIED APPLICATION SECURITY OVER TLS

VIII-A MIHTTPS: A BASIC HTTPS CLIENT. To validate
our application-level recommendations and show that one can
indeed achieve transparent application-level security over TLS,
we build and verify an exemplary HTTPS library, at the same
level of abstraction as the CURL library, for example, but with
fewer features. Its client command-line interface is as follows:

$ mihttps --help
Usage: mihttps [options] REQUEST

--host=NAME https server host name
--channel=ID channel identifier
--client=NAME authenticated client name

Our goal is to provide (1) a basic API with strong implicit
security; and (2) a flexible implementation that supports typical
mechanisms available in HTTP (cookies) and TLS (multiple

connections, renegotiation, resumption, late client authentica-
tion). miHTTPS consists of 600 lines of F# coded on top of the
miTLS verified reference implementation [15]. In particular,
our client automatically processes HTTP 1.0 headers, cookies,
etc, and interoperates with existing, unmodified web servers.
We tested e.g. authenticated webmail access to Roundcube.

(We refer to the online materials for a more detailed de-
scription of miHTTPS, its code, and its verification.)

Secure Channels Our main communication abstraction is a
long-term, stateful channel between a client and a host. Each
client may create any number of channels and use them to
request documents from URLs at different hosts; each channel
supports parallel requests, as required e.g. when loading a
web page that includes numerous resources. Each request may
asynchronously return a document (in any order).

Such channels are not reliable: requests and responses may
get lost or delayed, and their sender have no explicit acknowl-
edgment of peer reception. Instead, responses confirm requests,
and cookies attached to requests confirm prior responses.

In the command line, the host=NAME option indicates
that a new channel should be created and its ID returned,
whereas channel=ID indicates the local identifier of an
existing channel to reuse. These application-level channels are
not primitive in HTTPS or TLS; they intuitively account for
a series of related requests issued by a client. For example, a
user may have long-lived authenticated channels to every host
she trusts, plus shorter-lived anonymous channels. The server
is always authenticated. The user may use the client=NAME
option, where NAME refers to a valid client certificate she owns
to be used to authenticate her requests on the channel.

Simplifications We associate a unique host name to each
channel, treating each host as a separate principal: thus, we
do not deal with related sub-domains, redirects, or wildcards
in certificate names. We also do not support mixtures of HTTP
and HTTPS. Thus, we avoid many complications with cookies
discussed in §II and §III. (Applications may still multiplex
between hosts and protocols on top of our interface—what
matters is that we do not share private state between channels.)

Client and Server Credentials We rely on the public-key
infrastructure for X.509 certificates, and require that client and
host names exactly match their certificates’ common names.
Our threat model does not cover certificates mis-issued to the
adversary, or issued for different purposes with a common
name that matches an honest principal.

Credentials are associated with the whole channel, once
and for all. The host name cannot be changed, preventing
the renegotiation attack of §VI-A. The client can decide to
authenticate later on an anonymous channel, and from the
server’s viewpoint, this suffices to attribute all requests on the
channel to that client. From the client’s viewpoint, binding her
name to the channel before a particular request guarantees that
the server will only process it after client authentication.

Local State and Cookies Our channels maintain local, private
state, including e.g. open connections, live sessions, cookies,
and the names associated with the channel. Our channels also
buffer request and response fragments, in order to deliver only

14

whole HTTPS messages to the application—this simply foils
truncation attacks, including those of §III-B.

At the server, we partition incoming requests into sepa-
rate channels and track requests received from each client
by attaching a (locally stored) fresh random cookie to each
response. The set of responses actually received can then be
inferred from the cookies attached to latter requests. (Assum-
ing sufficient cookie storage space and entropy to prevent
collisions, this pattern provides accurate tracking information.)
VIII-B SECURITY GOALS (INFORMAL). We primarily focus
on application-level channel integrity—see the online version
for privacy. We follow the cryptographic model of [15] and
configure honest clients and servers to only negotiate strong
ciphersuites and algorithms [as defined by 15]. We show that,
with overwhelming probability, the following properties hold:

1) Request Integrity: when an honest server accepts a
request and attributes it to a channel bound to honest
server and client names, the client has indeed sent the
request on that channel, with matching principal names.

2) Response Integrity: when an honest client accepts a
document in reply to a request to an honest server, that
server has indeed sent the document in response to this
request. (This property is sometimes called correlation.)

3) Tracking: when an honest server accepts a request
echoing the cookie of a response on a channel with an
honest client, the client indeed received this response.

Property 1 excludes any mis-attribution of a request to a
client. Properties 1 and 2 apply to whole messages, thereby ex-
cluding truncations. This is achieved by parsing and buffering
message fragments until the whole message has been received,
decrypted, and authenticated.
VIII-C MIHTTPS: SECURE TYPED INTERFACE. We follow
the modular type-based cryptographic verification method [26]
that was used to obtain the main security theorem for the
miTLS API [15]. They specify computational security for var-
ious constructions and protocols using precise typed interfaces
(instead of code-based games or ideal functionalities). They
employ an expressive refinement-based type system for F#,
write detailed typed annotations (4,000 lines for miTLS), and
verify their code against them automatically using F7, an
extended typechecker, coupled with Z3, an SMT solver.

The verification effort for miHTTPS consists of specifying
its typed API and letting F7 typecheck its 600 lines of code,
using the lower-level, verified, precisely-typed API of miTLS.
In the rest of the section, we outline the types we use to capture
the security goals of §VIII-B.

Figure 4 shows fragments of our typed specification for
miHTTPS, focusing on the main functions for the client. It
defines a type for names—plain strings used as common names
in certificates—and for channels: type (;host:name)chan. This
type is indexed by a value, host, itself of type name, recording
in the type that the channel should be used only for com-
munications with servers with a valid certificate for host. This
type is also abstract, hiding its representation, so that only our
miHTTPS implementation can access it; applications can just
pass channels as arguments to the API, but they cannot access
their internal states (and so cannot accidentally leak keys) or

1 type name = string (∗ common names for both clients & hosts ∗)
2 type (;host:name) chan
3 predicate Honest of name (∗ no compromised certificate ∗)
4 predicate Client of name ∗ host:name ∗ (;host)chan
5
6 module Data (∗ defined by the application ∗)
7 type (;host,chan)request
8 type (;host,chan,request)document
9 module Certificate (...)

10 module Server (...)
11 module Client
12 val create: h:name → (;h) chan
13 val request: h:name → c:((;h)chan) →
14 (a:name{Client(c,a)})option → r:(;h,c)request → unit
15 val poll: h:name → c:((;h)chan) →
16 (r:(;h,c)request ∗ (;h,c,r)document) option

Fig. 4. miHTTPS interface (excerpt)

modify the host index (and so cannot get confused between
channels to different hosts).

Our API has 3 main modules, and is parameterized by an
application module, Data, provided by the application, that
defines types for requests (URLs) and responses (documents).
These types are both abstract and indexed. Their indexes
specify the host, the channel, and the request (for responses),
so only the application above miHTTPS can create and access
values at those types. They yield strong, information-theoretic
security: provided that the channel is between honest client and
server, type safety ensures that our protocol stack, including
HTTPS, TLS, TCP, and any network adversary, cannot read
their content (except for their size after encryption), tamper
with their content, or move contents from one channel to
another. Essentially, the protocol can only pass requests un-
changed from clients to servers, and similarly for responses.

The Certificate module manages certificates. Reflecting our
threat model, it has functions for generating certificates for
Honest names and endorsing keys for dishonest names.

The Server module defines the API for miHTTPS servers.
The Client module is the actual API used by client appli-

cations, such as our command-line client. It has functions for
creating a new channel towards a fixed host h, for sending
requests (with optional client authentication), and for polling
responses to prior requests. These functions have precise value-
dependent types specifying their pre- and post-conditions. For
instance, request takes 4 parameters: the target host h; an
existing channel c for that host; an optional client name a
authorized by the user for that channel (as indicated by the
predicate Client(c,a)); and a request for that host and channel.

IX. IMPACT AND LIMITATIONS

We have presented a series of attacks on authentication
mechanisms built within and over TLS. Table II summarizes
these new attacks and compares them to previous attacks, in
terms of their impact and limitations. The table lists precondi-
tions for each attack: what the attacker must be capable of;
how the application (mis-)uses TLS; and whether previous
mitigations block the attack (7) or not (3).

For example, the second row indicates that the cookie cutter
attack of §III-B requires a network attacker and a client
application that processes truncated HTTP headers over TLS

15

TABLE II. SUMMARY OF ATTACKS: NOVELTY, IMPACT AND PRECONDITIONS

Attacker Abilities API Assumptions Mitigations

Attack Broken Mechanism 1 2 3 4 5 6 7 8 9 10 11 Refs

TLS Truncation HTTPS Session (Tampered) 3 3 [13, 52]
∗Cookie Cutter HTTPS Session (Hijacked) 3 3 3 §III-B
Session Forcing (Server) HTTPS Session (Login CSRF) 3 3 3 [12, 18]Session Forcing (Net) 3 7

∗Truncation+Session Forcing HTTPS Session (Login CSRF) 3 3 3 3 §III-C

TLS Renegotiation (Ray) TLS Client Auth (Certificate) 3 7 [49, 45]TLS Renegotiation (Rex) 3 3 3 7
∗Triple Handshake (RSA) 3 3 3 3 §VI-A
∗Triple Handshake (DHE) TLS Client Auth (Certificate)

3 3 3 3 3 §V-B

MITM Tunnel Auth (Net) EAP (Certificate, Password) 3 7 7 [8]MITM Tunnel Auth (Server) EAP (Certificate) 3 3 3 7
∗MITM Compound Auth EAP (Certificate) 3 3 3 3 §VI-B
∗MITM Channel Bindings SASL (SCRAM-Password) 3 3 3 3 §VI-C
∗MITM Channel ID Channel ID (Public-Key) 3 3 3 3 §VI-D

1. Client connects to untrusted server 17. Client accepts unknown DH groups/degenerate public keys
2. Active network attacker 18. Client accepts server certificate change during renegotitation
3. Client authenticates on untrusted server 19. HSTS: Require TLS for all actions on trusted server
4. Attacker controls one subdomain on trusted server 10. Require renegotiation indication extension
5. Application accepts truncated TLS streams 11. Bind authentication protocol to TLS channel
6. Application sends attacker-chosen plaintext in channel

and a server application that allows chosen plaintexts before
the Set-Cookie header. Its advantage over previous TLS
truncation attacks is a higher impact: it enables full HTTPS
session hijacking (by stealing session cookies) between main-
stream web browsers and popular websites such as Google and
Facebook. Conversely, our variant of network-based session
forcing (fifth row, §III-C) has the same impact as previous
attacks; its novelty is that it bypasses their HSTS mitigation.

Our new attacks on TLS renegotiation, PEAP, SASL, and
Channel ID are server-based man-in-the-middle attacks. They
require that a client be willing to connect and authenticate
with some credential (e.g. an X.509 certificate) at an untrusted
server. The resulting attack is that the untrusted server can
impersonate the client at any trusted server that accepts the
same credential. The precondition that the client be willing to
use its credential at an untrusted server is restrictive: it is more
reasonable for public-key certificates than for server-specific
tokens such as passwords. Still, such man-in-the-middle at-
tacks by malicious servers were meant to be prevented by
various channel-binding mechanisms built into these protocols,
and our attacks show that these mitigations are insufficient.

Our triple handshake attack on TLS renegotiation (§VI-A)
bypasses the renegotiation indication countermeasure, but it
applies only to servers that authenticate clients with certifi-
cates during renegotiation. Such server configurations are not
widespread, but can still be found in banks, certificate authori-
ties, and VPN services. Furthermore, our impersonation attacks
apply only to clients that are willing to accept a change of
server certificates during renegotiation. Our experiments show
that these and other preconditions in the table are frequently
met by popular web browsers and TLS and HTTPS libraries.

IX-A RESPONSIBLE DISCLOSURE. We reported the attacks
to several software vendors and suggested short-term fixes that

invalidate the preconditions of these attacks. We summarize
their responses below. In light of our findings, we advocate
that all applications that rely on TLS carefully review their
use of TLS libraries and implement similar fixes if necessary.
• Chromium (used by Chrome, Android, Opera): Header

truncation attacks prevented in CVE-2013-2853. Server
certificate change during renegotiation prevented in
CVE-2013-6628.

• SChannel (used by Internet Explorer): Degenerate
Diffie-Hellman public keys and server certificate change
during renegotiation both prevented by a security update.

• NSS (used by Firefox): Degenerate Diffie-Hellman pub-
lic keys prevented in CVE-2014-1491.

• Channel ID (implemented in Chrome): Impersonation
attack prevented by using only ECDHE ciphersuites;
specification revised to use session hashes (§VII-A).

• Safari: Notified of header truncation attack on June 13,
2013. Notified of incorrect renegotiation behavior on
January 10, 2014. Acknowledged, not fixed.

• Apache: Notified of POST message truncation in
mod_php on April 29, 2013. Acknowledged, not fixed.

These short-term fixes, however, do not address our attacks
on channel bindings in SASL and compound authentication
in PEAP. More generally, our findings falsify the assumptions
made by the authors and users of various protocol specifi-
cations [23, 49, 48, 51, 27, 42, 1, 6, 39, 33, 10]. A more
systematic fix would be to strengthen the TLS protocol itself
to provide these stronger expected authentication properties.

We contacted various members of the TLS working group,
including authors of the renegotiation extension [49]. They
acknowledged the attack and we are collaborating on two
internet drafts that describe the mechanisms proposed in §VII.
We informed authors of TLS channel bindings [6] of our

16

attacks and they acknowledged that tls-unique in its current
form should not be used after resumption. Discussions on
revising the channel binding specification are ongoing.

The security of our proposed extensions remains to be
formally evaluated. We plan to extend the cryptographic proofs
of miTLS to precisely model these extensions and verify that
they provide stronger authentication guarantees for TLS.
Acknowledgements We thank Martı́n Abadi, Bruno Blanchet,
Catalin Hritcu, Markulf Kohlweiss, Adam Langley, Marsh Ray,
Martin Rex, Matthew Smith, Santiago Zanella-Beguelin and
the anonymous referees for their early comments on this paper.

REFERENCES
[1] [MS-PEAP]: Protected Extensible Authentication Protocol (PEAP). http:

//msdn.microsoft.com/en-us/library/cc238354.aspx, 2013.
[2] HTTPS Everywhere. https://www.eff.org/https-everywhere, 2014.
[3] M. Abadi. Security protocols and their properties. In Foundations of

Secure Computation, 2000.
[4] N. AlFardan, D. Bernstein, K. Paterson, B. Poettering, and J. Schuldt.

On the Security of RC4 in TLS. In USENIX Security, 2013.
[5] N. J. AlFardan and K. G. Paterson. Lucky thirteen: breaking the TLS

and DTLS record protocols. In IEEE S&P, 2013.
[6] J. Altman, N. Williams, and L. Zhu. Channel Bindings for TLS. IETF

RFC 5929, 2010.
[7] R. Anderson and S. Vaudenay. Minding your p’s and q’s. In ASIACRYPT,

1996.
[8] N. Asokan, V. Niemi, and K. Nyberg. Man-in-the-middle in tunnelled

authentication protocols. In Security Protocols. 2005.
[9] B. Aziz and G. Hamilton. Detecting man-in-the-middle attacks by

precise timing. In SECUREWARE, 2009.
[10] D. Balfanz and R. Hamilton. Transport Layer Security (TLS) Channel

IDs. IETF Internet Draft v01, 2013.
[11] E. Barker, D. Johnson, and M. Smid. NIST Special Publication 800-

56A Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography (Revised), 2007.

[12] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for cross-site
request forgery. In ACM CCS, 2008.

[13] D. Berbecaru and A. Lioy. On the Robustness of Applications Based on
the SSL and TLS Security Protocols. In PKI. 2007.

[14] K. Bhargavan, C. Fournet, R. Corin, and E. Zălinescu. Verified Crypto-
graphic Implementations for TLS. ACM TISSEC, 15(1):1–32, 2012.

[15] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Strub.
Implementing TLS with verified cryptographic security. In IEEE S&P,
2013.

[16] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P. Strub, and
S. Zanella-Beguelin. Proving the TLS handshake (as it is). 2013.
Unpublished Draft.

[17] S. Blake-Wilson and A. Menezes. Unknown key-share attacks on the
station-to-station (STS) protocol. In PKC, 1999.

[18] A. Bortz, A. Barth, and A. Czeskis. Origin cookies: Session integrity
for Web applications. In W2SP, 2011.

[19] A. Cassola, W. Robertson, E. Kirda, and G. Noubir. A practical, targeted,
and stealthy attack against WPA enterprise authentication. In NDSS,
2013.

[20] S. Chaki and A. Datta. ASPIER: An automated framework for verifying
security protocol implementations. In IEEE CSF, 2009.

[21] L. Chen. NIST Special Publication 800-108: Recommendation for Key
Derivation Using Pseudorandom Functions, 2009.

[22] J. Clark and P. van Oorschot. SoK: SSL and HTTPS: Revisiting Past
Challenges and Evaluating Certificate Trust Model Enhancements. In
IEEE S&P, 2013.

[23] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. IETF RFC 5246, 2008.

[24] M. Dietz, A. Czeskis, D. Balfanz, and D. S. Wallach. Origin-bound
certificates: a fresh approach to strong client authentication for the web.
In USENIX Security, 2012.

[25] T. Duong and J. Rizzo. The CRIME attack. In Ekoparty, 2012.
[26] C. Fournet, M. Kohlweiss, and P.-Y. Strub. Modular code-based

cryptographic verification. In ACM CCS, 2011.
[27] P. Funk and S. Blake-Wilson. Extensible Authentication Protocol

Tunneled Transport Layer Security Authenticated Protocol Version 0.
IETF RFC 5281, 2008.

[28] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The most dangerous code in the world: validating SSL
certificates in non-browser software. In ACM CCS, 2012.

[29] F. Giesen, F. Kohlar, and D. Stebila. On the security of TLS renegotia-
tion. In ACM CCS, 2013.

[30] J. Hodges, C. Jackson, and A. Barth. HTTP Strict Transport Security
(HSTS). IETF RFC 6797, 2012.

[31] P. Hoffman. Additional Master Secret Inputs for TLS. IETF RFC 6358,
2012.

[32] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk. On the security of
TLS-DHE in the standard model. In CRYPTO, 2012.

[33] S. Josefsson and N. Williams. Using GSS-API Mechanisms in SASL:
The GS2 Mechanism Family. IETF RFC 5801, 2010.

[34] B. S. Kaliski Jr. An unknown key-share attack on the MQV key
agreement protocol. ACM TISSEC, 4(3):275–288, 2001.

[35] H. Krawczyk, K. G. Paterson, and H. Wee. On the Security of the TLS
Protocol: A Systematic Analysis. In CRYPTO, 2013.

[36] G. Lowe. An attack on the needham-schroeder public-key authentication
protocol. Information Processing Letters, 56(3):131–133, 1995.

[37] M. Marlinspike. More Tricks For Defeating SSL In Practice. Black Hat
USA, 2009.

[38] N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, and B. Preneel. A
cross-protocol attack on the TLS protocol. In ACM CCS, 2012.

[39] A. Menon-Sen, N. Williams, A. Melnikov, and C. Newman. Salted
Challenge Response Authentication Mechanism (SCRAM) SASL and
GSS-API Mechanisms. IETF RFC 5802, 2010.

[40] C. Meyer and J. Schwenk. Lessons learned from previous SSL/TLS
attacks – A brief chronology of attacks and weaknesses. In IACR
Cryptology ePrint Archive, 2013.

[41] R. Oppliger, R. Hauser, and D. Basin. SSL/TLS session-aware user
authentication – Or how to effectively thwart the man-in-the-middle.
Computer Communications, 29(12):2238–2246, 2006.

[42] A. Palekar, D. Simon, J. Salowey, H. Zhou, G. Zorn, and S. Josefsson.
Protected EAP protocol (PEAP) version 2. IETF Internet Draft v10,
2004.

[43] K. G. Paterson, T. Ristenpart, and T. Shrimpton. Tag size does matter:
Attacks and proofs for the TLS record protocol. In ASIACRYPT, 2011.

[44] J. Puthenkulam, V. Lortz, A. Palekar, D. Simon, and B. Aboba. The
compound authentication binding problem. IETF Internet Draft v04,
2003.

[45] M. Ray and S. Dispensa. Renegotiating TLS, 2009.
[46] J.-F. Raymond and A. Stiglic. Security issues in the Diffie-Hellman key

agreement protocol. IEEE Transactions on Information Theory, 22:1–17,
2000.

[47] E. Rescorla. HTTP over TLS. IETF RFC 2818, 2000.
[48] E. Rescorla. Keying Material Exporters for Transport Layer Security

(TLS). IETF RFC 5705, 2010.
[49] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. TLS renegotiation

indication extension. IETF RFC 5746, 2010.
[50] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig. TLS session

resumption without server-side state. IETF RFC 5077, 2008.
[51] D. Simon, B. Aboba, and R. Hurst. The EAP-TLS Authentication

Protocol. IETF RFC 5216, 2008.
[52] B. Smyth and A. Pironti. Truncating TLS Connections to Violate Beliefs

in Web Applications. In USENIX WOOT, 2013.
[53] C. Soghoian and S. Stamm. Certified lies: Detecting and defeating

government interception attacks against SSL. In FC. 2012.
[54] E. Stark, L.-S. Huang, D. Israni, C. Jackson, and D. Boneh. The case for

prefetching and prevalidating TLS server certificates. In NDSS, 2012.
[55] P. van Oorschot. Extending cryptographic logics of belief to key

agreement protocols. In ACM CCS, 1993.

17

[56] D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In
USENIX Electronic Commerce, 1996.

[57] N. Williams. On the use of channel bindings to secure channels. IETF
RFC 5056, 2007.

[58] M. Zalewski. Browser Security Handbook. http://code.google.com/p/
browsersec/.

