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ABSTRACT
We investigate current deployment practices for virtual host-
ing, a widely used method for serving multiple HTTP and
HTTPS origins from the same server, in popular content
delivery networks, cloud-hosting infrastructures, and web
servers. Our study uncovers a new class of HTTPS origin
confusion attacks: when two virtual hosts use the same TLS
certificate, or share a TLS session cache or ticket encryption
key, a network attacker may cause a page from one of them
to be loaded under the other’s origin in a client browser.
These attacks appear when HTTPS servers are configured
to allow virtual host fallback from a client-requested, se-
cure origin to some other unexpected, less-secure origin. We
present evidence that such vulnerable virtual host configura-
tions are widespread, even on the most popular and security-
scrutinized websites, thus allowing a network adversary to
hijack pages, or steal secure cookies and single sign-on to-
kens. To prevent our virtual host confusion attacks and re-
cover the isolation guarantees that are commonly assumed in
shared hosting environments, we propose fixes to web server
software and advocate conservative configuration guidelines
for the composition of HTTP with TLS.

1. INTRODUCTION
Web applications are increasingly being moved to the cloud

or deployed on distributed content delivery networks (CDNs),
raising new concerns about their security. The cloud en-
vironment requires the sharing of servers and network ad-
dresses between many unrelated, mutually distrusting prin-
cipals. On the client side, the problem of securely isolating
websites from each other within the browser has been a core
topic of security research in recent years, producing a rich
literature centered around the notion of security origin. Yet,
on the server side, the security implications of hosting large
numbers of websites from the same web servers has gathered
relatively little attention, even though cloud infrastructures
constitute a prime target for attacks, both from criminals
and from governmental adversaries [1].
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Figure 1: HTTPS server with multiple virtual hosts

The Transport Layer Security (TLS) protocol [2], as used
within HTTP over TLS (HTTPS) [3], remains the only de-
fense against network-layer attacks on the web. It provides
authentication of the server (and optionally, of the client), as
well as confidentiality and integrity of HTTP requests and
responses, against attackers that control both the network
and malicious websites visited by the client.

While the precise security guarantees of TLS have been
extensively studied [4–6], these formal works all consider a
simple deployment model, where each server only has one
network interface and one certificate valid for a single do-
main that matches the server identity. This model does not
reflect current practices, especially in the cloud, but also in
many mainstream web servers.

Sharing TLS Server Credentials Many web servers em-
ploy virtual hosting to serve multiple HTTPS domains be-
hind the same TLS server. To do this, the TLS server needs
to decide which certificate to present to an incoming connec-
tion. This decision is either based on the incoming IP ad-
dress, or increasingly often, on the server identity requested
within the TLS server name indication (SNI) extension [7].
Even when different domains use different certificates, by
using the same TLS server, they often implicitly share the
TLS session cache that is used for fast session resumption.

Moreover, the same certificate may be used across multiple
domains on different servers. Recent measurement studies
of TLS certificate issuance [8, 9] show that a majority of
newly issued certificates are valid for more than one domain
name, with a significant number of them containing at least
one wildcard. For example, all the front-end Google servers



share a certificate that covers *.google.com as well as 50
other DNS names, many with wildcards.

Finally, the same certificate may be used on multiple ports
on the same domain. For example, web servers often listen
for HTTP-based protocols such as WebSocket [10] on non-
traditional ports, but reuse the same IP address, domain
name, and TLS certificate as the main website.

When TLS credentials are shared between different HTTP
server entities, how do the security guarantees provided by
TLS relate to those desired by HTTPS? In this paper, we
investigate this question with regard to the origin-based se-
curity policies commonly used in modern web applications.

Same Origin Policy Web browsers identify resources by
the origin from which they were loaded, where an origin
consists of the protocol, domain name and port number, e.g.
https://y.x.com:443. The same-origin policy [11] allows
arbitrary sharing between pages on the same origin, but
strictly regulates cross-origin interactions. Hence, if any
page on a given origin is compromised, either by a cross-
site scripting (XSS) flaw [12], or because the server is under
attacker control, the whole origin must be considered com-
promised as well. Consequently, prudent websites divide
their content into different subdomains at different security
levels, so that the compromise of one (e.g. blog.x.com) does
not affect another (e.g. login.x.com).

In the presence of a network attacker, the same origin pol-
icy only protects HTTPS origins, for which the underlying
TLS protocol can guarantee that the browser is connected
to a server that owns a certificate for the desired origin.
However, when TLS server credentials, such as certificates
and cached sessions, are shared across servers, the isolation
guarantees of the same origin policy crucially rely on the
routing of HTTP requests to the correct origin server.

Routing Requests to Virtual Hosts The server-side
counterpart of the notion of origin is the virtual host, whose
role is to produce the response to an HTTP request given
its path and query parameters (i.e. what appears in the URL
after the origin). Virtual hosts used to correspond to direc-
tories on the server’s filesystem, but with the widespread use
of rewriting rules and dynamically generated pages, virtual
hosts are now best treated as abstract request processors.

Figure 1 depicts the process that a web server uses to
choose a virtual host for a given HTTPS request. The de-
cision depend on parameters gathered at various levels: the
IP address and port that the TCP connection was accepted
on, the SNI extension received during the TLS handshake,
and the Host header received in the HTTP request. On
the client, all these parameters are derived from the request
URL (a DNS request yields the IP address). On the server,
each parameter is considered separately in a manually con-
figured set of complex rules to determine the virtual host
that will handle the request (see Section 3 for more detail).

In particular, most web servers will pick a fallback virtual
host when the normal routing rules fail. In plain HTTP,
routing fallback can be quite useful, for instance to access
a website by its IP address or former domain name, or to
use the same request handler for all subdomains. However,
HTTPS routing fallback can be extremely dangerous, since
it may allow a request for a client-requested secure origin
to be processed by the virtual host for some unexpected,
less-secure origin.

Virtual Confusion Attacks The main contribution of
this paper is the identification of a new class of attacks on
virtual hosts that share TLS credentials, either on the same
or on different web servers. In these attacks, a network at-
tacker can take an HTTPS connection meant for one of these
virtual hosts and redirect it to the other. The TLS connec-
tion succeeds because of the shared TLS credentials; then,
because of virtual host fallback, the request is processed by
a virtual host that was never intended to serve contents for
the domain in the Host header.

In particular, we show that a network attacker can al-
ways break the same-origin policy between different ports
on the same domain, by redirecting connections from one
port to another. Moreover, if two servers serving two inde-
pendent domains share a common certificate (covering both
domains), or a cached TLS session, the network attacker can
cause pages from one server to be loaded under the other’s
origin. In all these cases, the attacker subverts the browser’s
intended origin of the request, often with exploitable results.

Concrete Website Exploits Origin confusion attacks be-
tween two HTTPS domains are particularly dangerous when
one of them is less secure than the other, for example, if one
has an XSS flaw or an insecure redirection. We detail five
exemplary instances of origin confusion attacks that demon-
strate different attack vectors and illustrate the applicability
and impact of this class of attacks:

1. We show how HTTPS requests to many websites hosted
by the Akamai CDN can be hijacked by a server con-
trolled by an attacker (Section 2).

2. We show how single sign-on access tokens on Yahoo
(and several other major websites) can be stolen by
exploiting an unsafe redirector on Yahoo (Section 4.1).

3. We describe a combined network- and web-based XSS
attack on Dropbox that exploits malicious hosted con-
tent and cookie forcing (Section 4.2).

4. We show how HTTPS requests to highly-trusted Mozilla
websites such as bugzilla.mozilla.org can be redi-
rected to user-controlled pages on git.mozilla.org,
by exploiting shared TLS session caches (Section 4.3).

5. We show how TLS session reuse in the SPDY proto-
col [13] can be exploited to impersonate any HTTPS
website in Chrome (Sections 6).

These attacks were responsibly disclosed, acknowledged,
and fixed in the relevant websites, CDNs, browsers, and
web servers. They have been awarded bug bounties by
HackerOne, Chromium, and Mozilla. More worryingly, the
attacks show the dangerous consequences of seemingly in-
nocuous routing decisions within widely used web servers,
TLS terminators, and reverse proxies. Section 7 discusses
some countermeasures, and we hope this paper will trigger
a more systematic study of server-side HTTPS multiplexing,
and research on new robust designs that can prevent such
attacks.

2. IMPERSONATING WEBSITES SERVED
BY THE AKAMAI CDN

Akamai is the leading content delivery network (CDN) on
the web, claiming to be responsible for up to 20% of the total
Internet traffic [14]. Like other CDNs, Akamai has a large
network of points of presence (PoP) distributed all around



Browser

a.com
Backend servera.com

certificate

IP
1

z.com
*.z.com

certificate

IP
N

Akamai
certificate

IP
0

cdn.z.com
Backend Server

Connect

a.com certificate

GET / HTTP/1.1
Host: a.com

R(a.com/)

Connect

z.com certificate

GET /p/x.com/ HTTP/1.1
Host: bad.z.com

R(x.com/)

Virtual 
Hosts

x.com server

Connect

Akamai certificate

GET /p/x.com/ HTTP/1.1
Host: xxx.akamai.net

R(x.com/)

a.com

cdn.z.com

…….

Akamai
(default)

Akamai PoP

Figure 2: Akamai Point-of-Presence (P0P) server design

the world, whose job is to cache static contents from the web-
sites of Akamai customers, to reduce latency and distribute
load. Akamai serves varied customers, including popular so-
cial networks like linkedin.com and sensitive websites like
nsa.gov that are often accessed over HTTPS. We will see
how virtual host fallback on Akamai’s PoPs leads to a seri-
ous origin confusion attack on such websites.

CDNs use one of two strategies to deploy HTTPS for cus-
tomer websites; an extensive survey of real-world practices
appears in [15]. Some CDNs (e.g. CloudFlare) use shared
certificates that are fully managed by the CDN operator
with no involvement from its customer. Shared certificates
are valid for a large number of customer domains and may
be deployed on all the PoPs of the CDN; their private keys
remain under the CDN provider’s control. Other CDNs (e.g.
Akamai) require customers to obtain custom certificates for
their HTTPS domains from certification authorities. The
CDN must be given access to the private keys of these cer-
tificates, so that they can be installed on the PoPs allocated
to the customer. On a PoP with custom certificates, the
choice of server certificate on a TLS connection may depend
on the incoming IP address or on the server name in the
TLS SNI extension. CDNs increasingly prefer SNI, but it is
not available on some legacy clients (e.g. Windows XP).

Virtual Host Fallback in Akamai PoPs The Akamai
CDN uses a uniform virtual host configuration on its PoPs,
all of which run a custom HTTP server implementation
called ”AkamaiGhost”. Figure 2 depicts how HTTPS re-
quests are processed by Akamai: each PoP has N custom
certificates installed for N virtual hosts, and each certificate

is served on a dedicated IP address. Therefore, if a client
connects to IP 1, it will be given the certificate for a.com,
whereas if it connects to IP 2, it will be given the certificate
for *.z.com. After the TLS connection is complete, the PoP
inspects the HTTP Host header and routes the request to
the appropriate virtual host.

Each PoP also serves a special Akamai virtual host, which
is also the fallback default. Hence, if the Host header of a
request (received on any IP address) isn’t one of the N con-
figured customer domains, it is routed to this default host.
Interestingly, the Akamai virtual host acts as a universal
proxy: when a request for /p/a.com/path is received, for a
certain well-known prefix p, the PoP forwards the request
to a.com/path, along with all HTTP headers sent by the
client (including cookies and HTTP authentication). Then,
it caches and forward the response from a.com to the client.
Providing an open proxy for HTTP connections to any web-
site is a perfectly reasonable design decision and may even be
considered a generous gesture1. Unfortunately, the impact
of this proxy on HTTPS connections to customer domains
is severe.

Server Impersonation Attack We now consider a con-
crete example. LinkedIn uses Akamai only for the domain
static.linkedin.com, but the certificate it provides to Aka-
mai is valid for *.linkedin.com. Suppose a user is logged
in to LinkedIn from her browser. The attack (shown for
bad.z.com in Figure 2) proceeds as follows:

1. A network attacker gets the browser to visit: https:

1http://www.peacefire.org/bypass/Proxy/akamai.html



Figure 3: Outcome of the attack against nsa.gov

//www.linkedin.com/p/attacker.com/ by injecting
JavaScript on some HTTP page loaded by the browser.

2. The attacker redirects the resulting TLS connection to
the LinkedIn IP address on some Akamai PoP.

3. The TLS connection succeeds since the certificate re-
turned from the PoP is valid for *.linkedin.com.

4. The PoP only has a virtual host configured for static.
linkedin.com; hence, the request falls back to the
Akamai virtual host, which triggers the open proxy
to attacker.com.

5. The user’s browser loads the attacker’s website under
the https://www.linkedin.com origin (no certificate
warning). It also sends the user’s Secure, HttpOnly

LinkedIn cookies to the attacker.

This is an instance of an origin confusion attack that leads
to full server impersonation. It defeats all existing HTTPS
protections: it leaks all cookies, it allows the attacker to
disable HSTS and content security policy. Worse, it does
not leave any trace on the impersonated server (which is
never involved during the attack). In the PoP’s HTTP log,
the request looks like a harmless caching query to the proxy.

Responsible Disclosure This critical flaw existed in Aka-
mai servers for nearly 15 years without getting noticed. Based
on domains in the Alexa list, we estimate that at least 12,000
websites have been vulnerable to this attack, including 7 out
of the top 10 websites in the USA. For example, Figure 3
depicts the server impersonation attack on the nsa.gov do-
main. Following our report, Akamai changed its default vir-
tual host to one that only returns an error page.

3. MULTIPLEXING HTTPS CONNECTIONS
In this section, we investigate how real-world HTTPS im-

plementations decide which certificate and virtual host to
use when processing an incoming request. This problem ap-
plies to all popular web servers such as Apache, Nginx or
IIS, but also to SSL terminators, CDN frontend servers and
other reverse proxy software.

Virtual Host Parameters There are three layers of iden-
tity involved in the processing of HTTPS request: the net-
work layer identity corresponds to an IP address and port;
the transport/session layer identity consists of a server cer-
tificate and TLS session database and/or ticket encryption
key; lastly, the application layer identity is conveyed in the

ssl_session_ticket_key "/etc/ssl/ticket.key";
ssl_session_cache shared:SSL:1m;

server { #1
listen 1.2.3.4:443 ssl;
server_name www.a.com;
ssl_certificate "/etc/ssl/a.pem";
root "/srv/a";

}
server { #2

listen 4.3.2.1:443 ssl;
server_name ~^(?<sub>api|dev)\.a\.com$;
ssl_certificate "/etc/ssl/a.pem";
root "/srv/api";

}
server { #3

listen 2.1.4.3:443 ssl;
server_name www.learn-a.com;
ssl_certificate "/etc/ssl/learn-a.pem";
root "/srv/learn";

}

Figure 4: Sample virtual host configuration

Host header of HTTP requests (however, there is no equiv-
alent header in responses, which are origin-unaware).

Concretely, each web server implements some multiplexing
logic based on a configuration file that defines how to route
an incoming HTTPS connection to the right virtual host.
While each server software has its own configuration syntax,
there is a common set of parameters that are used to define
new TLS-enabled virtual hosts:

1. A listen directive that specifies at least one pair of IP
address and port number on which the virtual host
accepts connections. It is possible to use a wildcard in
the IP address to accept connections to any address,
whereas a port must be specified.

2. A server name directive that may contain one or more
fully qualified domain names or regular expressions
defining a class of domain names. Without loss of gen-
erality, we assume that the server name is always given
as a single regular expression.

3. A certificate directive which points to the certificate
and private key to use for this virtual host.

4. A session cache directive, that optionally describes
how to store the data structures for session identifier
based resumption, either in memory, or on a hard drive
or external device. This directive may also specify the
encryption key for ticket-based resumption.

If any of the last three items is not defined in the configu-
ration of the virtual host, its value is typically inherited from
the server-wide configuration settings, if available. Figure 4
shows an example virtual host configuration for Nginx.

Request Routing The process of selecting the virtual host
to use for a given incoming connection can be broken up as
follows (see [16,17] for implementation-specific references):

1. First, the server initializes the list of candidates with
every virtual host defined in the configuration.

2. Then, the server inspects the IP address and port on
which the client connected. Virtual hosts defined on
a different IP address (save for wildcards) or port are
removed from the list of candidates.



3. The server next inspects the TLS handshake message
sent by the client.

(a) if the client hello message does not include the
SNI extension, the server will return the certifi-
cate configured in the virtual host that has been
marked as default for the given IP address and
port, or if no default is defined, in the first one;

(b) if an SNI value is specified, the server returns the
certificate from the first virtual host whose server
name matches the given SNI. If no server name
matches, once again, the certificate from the de-
fault host is used.

4. Next, the web server finishes the handshake and waits
for the client to send its request to inspect the Host

HTTP header. If it includes a port number, it is im-
mediately discarded. Then, the server picks either the
first virtual host from the candidate list whose server
name matches the HTTP Host. If none matches, it
picks either the default virtual host, if one is defined,
or the first host from the candidate list otherwise.

There are multiple problems with this virtual host selec-
tion process: for instance, it may allow the server to pick
TLS settings (including certificate and session cache) from
one virtual host, but route the incoming request to a differ-
ent one (this behavior may be justified by the SPDY opti-
mization described in Section 6).

Port Routing Even though the requested port is included
in the Host header, and thus reflects the actual port that the
browser will use to enforce the same-origin policy, is ignored
by all the implementations we tested in favor of the port the
connection was received on, which is unauthenticated. This
means that it is always possible for an attacker to redirect
requests from one port to another, and confuse the two ori-
gins. Because of this observation, we strongly recommend to
remove the port number from the same-origin policy, consid-
ering that cross-port origin isolation simply does not work
in practice (it is already known not to work with cookies).

Fallback Most dangerously, fallback mechanisms open a
wide range of unexpected behaviors, and they often depend
on the order in which the virtual hosts have been written
in the configuration file. The configuration in Figure 4 in-
cludes one of the most widespread vulnerable patterns. A
certificate valid for two subdomains of a.com is used in vir-
tual hosts on different IP addresses (possibly on different
physical machines). If an attacker intercepts a connection
to www.a.com and redirects it to 4.3.2.1:443, a page from
api.a.com will be loaded under the www.a.com origin, be-
cause the host selected during routing must match the IP
address and port of the connection.

TLS Session Cache Similarly, the TLS session caching
behavior appears to have serious pitfalls in several popular
web servers (unlike the request processing algorithm, session
caching mechanisms can significantly differ between imple-
mentations). For instance, in Nginx:

• By default, only ticket-based session caching is en-
abled. If no ticket key has been configured, a fresh one
is generated for each IP address and port (but not for
each virtual host). On the other hand, if a ticket key
is specified in the global configuration of the server, all
tickets created by any virtual host can be resumed on

any other. If a ticket key is given in the configuration
of a given virtual host, it will also replace the key on
all previously defined hosts on the same IP address.

• Session identifier-based resumption must be explicitly
enabled by configuring a session cache database on the
server. In-memory shared caches (shared in the sense
of threads), which carry an identifier, are commonly
used. Sessions from all virtual hosts that use the same
identifier in their shared cache can be resumed on each
other, regardless of IP address, SNI or certificate.

Once again, it is easy to mis-configure a server to allow
sessions to be resumed across virtual hosts. For instance, the
configuration in Figure 4 has a global ticket key: if the user
has a TLS session created with www.a.com, a resumption
attempt can be redirected by the attacker to 4.3.2.1:443:
the TLS session ticket will be accepted but because of fall-
back, a page from www.learn-a.com gets loaded under the
wrong origin, even thought they don’t use the same certifi-
cate. Such an attack is enabled by the lack of authentication
during the abbreviated TLS handshake: indeed, resumption
is purely based on the session identifier or session ticket,
regardless of the original SNI or server certificate.

In the next section, we demonstrate various classes of ex-
ploit that rely on virtual host confusion, illustrated by con-
crete attacks against popular websites.

4. ORIGIN CONFUSION EXPLOITS
In itself, virtual host confusion does not sound like a big

problem: fundamentally, it only allows a network attacker to
load a page under an unexpected, but related (in certificate
or session cache), origin. The interesting question is, what
can an attacker do with this capability? We found a vari-
ety of possible exploits that always follow the same pattern:
the loaded page contains bad HTTP characteristics that can
break the security of the confused origin.

In the case of Akamai, the loaded page was under complete
attacker control. We found similar cases where the loaded
page is controlled by the adversary. However, weaker forms
of control are a lot more common, but can be still exploited.
For instance, if the page sets the X-Frame-Options header to
allow, the confused origin can be loaded in an iframe, even
though the confused origin might have relied on that header
to block clickjacking. Similarly, the origin may have relied
on the Content-Security-Policy [18] header to block the
execution of injected inline scripts, but this can be broken
if the loaded page contains a more relaxed CSP. In the rest
of this section, we present three more exploits that rely on
more creative uses of a network attacker’s capabilities.

4.1 Cross-Protocol Redirections: OAuth
The first class of exploits relies on the observation that

many websites only use HTTPS on the security-critical parts
of their website (for instance, the login form). If, on a low-
security virtual host, there exists a page that redirects either
to plain HTTP, or to an arbitrary page on another origin
(open redirector), then, by confusing a request on a high
trust virtual host to such a page, an attacker may learn some
secret parameters from the query string or URL fragment by
intercepting the redirection.

The prime candidate for this type of exploit is single sign-
on access tokens, used by Facebook, Twitter, Google or Ya-
hoo on a large proportion of websites as a replacement for
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login forms. For instance, in the OAuth 2.0 protocol [19], a
client website registers its origin with the identity provider
(e.g. Google), and can obtain an access token to access the
user credentials by sending the user to the authorization
page on the identity provider’s website. This request in-
cludes a redirection URL on the registered high-trust origin
of the client website. The access token is included in the
redirection response in the URL fragment.

Assume X=https://oauth.a.com is the registered OAuth
origin, served by a virtual host that can be confused with
the one for https://www.a.com (e.g. because they share a
wildcard certificate for *.a.com). If the attacker finds a page
on www.a.com that redirects to HTTP or to his own website,
say on the path /p, then it can send the user to the URL:
https://idp.com/token?redirect_url=X/p, which in turn
redirects to: https://oauth.a.com/p#token. The attacker
redirects the request to oauth.a.com to point to the server
that handles www.a.com. The request is thus redirected to,
say, http://attacker.com/#token which leaks the access
token to the attacker. We found that many of the top Alexa
websites that use single sign-on systems are vulnerable to
these origin confusion exploits based on cross-protocol redi-
rections in practice (including Pinterest and Yahoo).

Responsible Disclosure We discussed this attack with
leading identity providers such as Facebook. We agree it
is inherently caused by the weakness of OAuth to redirec-
tion attacks, a problem that is well known and can only be
avoided by properly following recommendations regarding
redirections on OAuth-enabled websites.

4.2 Hosted Contents: Dropbox
Dropbox allows users to share their public files on the low-

trust origin dropboxusercontent.com, whereas it deploys
state of the art HTTP security protections on its high-trust
origin www.dropbox.com, including HSTS to prevent any
network attack. However, non-public files cannot be served
from this low-trust origin when the user wants to download
data from her account, because they require access to the
session cookie to prove that the user is authorized to view
the file. Thus, the dl-web.dropbox.com origin is used for

the purpose of displaying files from the user’s own Dropbox
account while he is logged in. This origin uses the same
wildcard certificate as www.dropbox.com.

Using virtual host confusion, an attacker is able to load a
page from the dl-web subdomain under the www origin. To
turn this into an exploit, the attacker can take advantage of
the complete lack of integrity guarantee for cookies [20,21].
The attacker then performs the following steps:

1. store a malicious HTML page on his own Dropbox ac-
count (on https://dl-web.dropbox.com/m);

2. trigger request to http://attacker.dropbox.com (not
protected by HSTS) and inject a Set-Cookie header
in the response with domain=.dropbox.com and a very
low max-age, that contains his own session identifier;

3. trigger request to https://www.dropbox.com/m, but
forward the connection to the dl-web server. The
Cookie header of the request contains (depending on
browser) the user’s session identifier, followed by the
attacker’s; the Dropbox server authenticates the latter
and returns the malicious page.

4. wait for the delay specified in max-age until the forced
cookie expires;

5. perform arbitrary requests on the user’s Dropbox ac-
count (same impact as a XSS flaw on www.dropbox.com).

Responsible Disclosure We reported this attack to the
Dropbox security team, who immediately confirmed the at-
tack and fixed their virtual host configuration.

4.3 Shared TLS Cache: Mozilla
When two different servers or virtual hosts share a TLS

session cache or session ticket encryption keys, an HTTPS
connection to one host may be redirected to the other (using
session resumption). If one of these hosts has a lower trust
level than the other, this amounts to a cross-site scripting
attack. We found multiple interesting examples of servers
on the web that share TLS session caches, most of which
can be found in cloud infrastructures, such as Amazon Web
Services, Yahoo or Google. Google is an interesting case:
every single Google front-end server uses the same session



cache and ticket key. However, because they also have the
exact same virtual host configuration, we found no exploit
against Google servers.

We found shared session caches to be a lot more common
than shared ticket keys within the sample of cloud servers
we tested, which we assume to be caused by improperly
configured, global-scoped caches. We observed that these
global caches are often too small to store the large amounts
of sessions created on these cloud services for more than
a few seconds, a sufficiently long time window for attacks.
However, most of these servers also implement ticket-based
resumption, even though ticket keys are often not synchro-
nized across servers (e.g. on Yahoo). Exploiting shared
caches when tickets are enabled requires another tool in the
network attacker arsenal.

Browsers attempt to maximize their compatibility with
buggy TLS implementations by retrying failed handshakes
with downgraded TLS versions, all the way from TLS 1.2
to SSL3. There have been concerns about downgrading; in
fact, browsers are moving away from the practice because of
another TLS attack (see Section 7 for details). By intercept-
ing connections and injecting TLS alerts on strong protocol
versions, an attacker is able to ensure that the browser will
connect to its target website with SSL 3.0. Hence, features
that rely on TLS extensions, such as SNI and ticket-based
resumption, become unavailable.

We put this attack into practice to exploit origin confu-
sion on Mozilla servers hosted on the Amazon cloud. We first
noticed that a number of Mozilla domains serve dangerous
content. For instance, git.mozilla.org or hg.mozilla.org
contain many third party files, as well as a number of test
HTML pages for the Firefox browser, some of which de-
liberately include XSS flaws. Even though these domains
use dedicated certificates, their server share a server-side
session cache with several other Mozilla domains, includ-
ing high-security ones such as the one used for bug reports
bugzilla.mozilla.org.

Figure 5 depicts the virtual host confusion exploit, which
translate to the following steps for the attacker:

1. find a vulnerable page /p on low-trust origin git;

2. trigger a request to https://bugzilla.mozilla.org/

(which has a single-domain, extended-validation cer-
tificate), while downgrading the connection to SSL 3.0,
ensuring the lack of a TLS session ticket;

3. trigger request to https://bugzilla.mozilla.org/p,
forwarding the connection to git server. The browser
resumes the previous TLS sessions, even though the
git server uses a completely different certificate. De-
spite the wrong Host header, the request is processed
by the git virtual host;

4. compromise bugzilla origin with the XSS flaw on /p.

As usual, the whole attack can occur in the background
without any user involvement (besides visiting any HTTP
website on the attacker network).

Responsible Disclosure We reported this attack to Mozilla
in bug 1004848. It was traced to a session cache isolation
vulnerability in the Stingray Traffic Manager, which was
fixed in version 9.7. We learned that a similar attack pre-
sented at Black Hat 2010 [22] had described how to transfer
an XSS flaw from one Mozilla domain to another, also us-
ing virtual host confusion. Surprisingly, the hackers who
described the attack consider it too targeted to be serious.
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Figure 6: Issuance of multi-domain certificates

5. IMPACT MEASUREMENT
We have described four different exploits of virtual host

confusion against major websites. However, these particular
exploits do not give a clear picture of the general proportion
of all websites vulnerable to similar attacks.

Virtual Host Fallback The main ingredient of our origin
confusion attacks is virtual host fallback. We tested the top
three most popular HTTPS implementations according to
the September 2014 Netcraft Web Survey2 with a configu-
ration similar to the one in Figure 4 (without any deliberate
effort to defend against virtual host confusion) and found
that fallback was indeed possible on IIS (36% of servers),
Apache (35%), and Nginx (14%).

Multi-Domain Certificates The issuance of new certifi-
cates by certification authorities is monitored fairly closely,
including by the academic community [23]. We can easily
build statistics about the number of domains found in pub-
licly trusted certificates issued between July 2012 and July
2013 based on data collected in [9]. The results, depicted
in Figure 6, show that about 40% of issued certificates are
valid for a single domain; however, about 10% of them con-
tain a wildcard. Many certificates are valid for two domains,
but among them, over 95% list the same top-level domain
with and without the www prefix (which can already lead to
confusion attacks, but in most cases, both are be served by
the same virtual host).

Shared TLS Cache Evaluating TLS session cache sharing
is very difficult: any two servers on the web can potentially
share their session ticket key or session database, regardless
of their IP addresses and certificates. We were able to find
several examples of shared session caches by manually test-
ing servers within the same IP ranges known to be used by
cloud services. Still, the actual number of vulnerable servers
remains mostly unknown.

Cross-Protocol Redirections We have shown in Sec-
tion 4.1 that a network attacker can impersonate users on
websites that use single sign-on protocols based on token
redirection to a secure registered origin, if this origin can
be confused for another which contains redirections to any
plain HTTP URL. To evaluate this scenario, we considered
the HTTPS-enabled subset of the Alexa Top 10,000 web-
sites [24], and simply sent a request for the path /404. In

2http://news.netcraft.com/archives/2014/09/24/
september-2014-web-server-survey.html



about 1 out of 6 cases, this request was redirected to HTTP.
Next, we decided to manually inspect the top 50 Alexa web-
sites in the US that implement a single sign-on system. We
found that 15 of them had in fact registered an HTTP origin
with their identity provider (allowing a network to get an ac-
cess token to impersonate the user without any effort). In 21
other cases, we found a page that redirects to HTTP within
the secure registered origin (in such cases, the attacker can
obtain access tokens without virtual host confusion). Fi-
nally, we found 11 instances where virtual host confusion
could be used to recover the access tokens.

Overall, the results of our study on the 50 most popu-
lar websites in the US show that access tokens are for the
most part not adequately protected against network attacks,
which is consistent with previous results [25–28]. In partic-
ular, the dangers of cross-protocol redirections appears to
be widely underestimated, especially on websites that im-
plement single sign-on protocols.

6. CONNECTION SHARING IN SPDY AND
HTTP/2

We have demonstrated in the previous sections that there
exists a significant gap between the models used to analyze
the security of TLS and the actual deployment of HTTPS in
practice. However, web technologies are evolving so quickly
that even the HTTPS multiplexer model presented in this
paper fails to capture all current uses of TLS on the web.

In this section, we investigate the next-generation web
protocols: SPDY [13] (which is already implemented major
browsers such as Chrome, Firefox and Internet Explorer),
and its derived IETF proposal for HTTP 2.0 [29]. An im-
portant design goal of these new protocols is to improve
request latency over HTTPS. To this end, SPDY attempts
to reduce the number of non-resumption TLS handshakes
necessary to load a page by allowing browsers to reuse pre-
viously established sessions that were negotiated with a dif-
ferent domain, under certain conditions. In current HTTP2
drafts, this practice is called connection reuse [29, Section
9.1.1], but we also use the expression connection sharing.

Connection Sharing Recall that in normal TLS resump-
tion, the browser caches TLS sessions indexed by domain
and port number. On the client-side, there is no confusion
between the different notions of identity: the origin of the
request matches the SNI sent by the client, its HTTP Host
header, the index of the session in the cache, and the origin
used by the same-origin policy (assuming the client is not
buggy). Thus, when accessing a website https://w.com,
the browser may resume its session to download a picture
at https://w.com/y, but it needs to create a fresh session
if the picture is loaded from https://i.w.com, even if the
domains w.com and i.w.com are served by the same server,
on the same IP, and using the same certificate.

Connection reuse in SPDY and HTTP2 is a new policy
that allows the browser to send the request to i.w.com on the
session that was established with w.com, because it satisfies
the two following conditions:

1. the certificate that was validated during the handshake
of the session being reused also covers the domain
name of the new request;

2. the original and new domain names both point to the
same IP address.
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Figure 7: Connection Reuse in SPDY

Figure 7 illustrates connection reuse in SPDY: each arrow
represents the TLS session used for the request(s) in its label.
Because w.com and i.w.com point to the same IP or Server
1, which uses a certificate that covers both names, the same
TLS session can be reused for requests to both domains.

Security Impact Connection sharing negates important
assumptions used in several TLS and HTTPS mechanisms,
such as TLS client authentication [30], Channel ID and Chan-
nel Bindings [31, 32] or certificate pinning [33, 34]. Con-
cretely, every feature derived from the TLS handshake may
no longer be considered to apply to the domain for which
the session was created, but instead, to potentially any name
present in the certificate used during the handshake. It is
tempting to argue that the fact these domains appear in the
same certificate is a clue that their sharing of some TLS
session-specific attributes could be acceptable, but we stress
that it is in fact not the case. For instance, recall from Sec-
tion 2 that CloudFlare uses shared certificates that cover
dozens of customers’ domains [9, 35]. In fact, it is common
on today’s web to connect to a website whose certificate is
shared with a malicious, attacker-controlled domain. With
connection reuse, requests for the honest and malicious do-
main not only use the same TLS session, but possibly the
same connection as well.

Figure 8: Interstitial Certificate Warning in Chrome



Exploit against Chrome With connection reuse, when a
certificate is accepted by the browser during a TLS hand-
shake, the established session can potentially be used for
requests to all the domains listed in the certificate. The
condition about the IP address of all these domains being
the same doesn’t matter to a network attacker who is any-
way in control of the DNS.

In Chrome up to version 36, if a network attacker can get
a user to click through a certificate warning for any unim-
portant domain (users may be used to ignore such warnings
when connecting to captive portals, commonly found in ho-
tels and other public network), he may be able to imper-
sonate an arbitrary set of other domains, by listing them
in the subject alternative name extension of the certificate
(which has no displayed feedback in the interstitial warning,
as shown in Figure 8). If the user attempts to connect to
any of these added domains (say, facebook.com), the at-
tacker can tamper with the DNS request for facebook.com

to return his own IP address, which tells the browser it can
reuse the SPDY connection established with the attacker
when the self-signed malicious certificate was accepted. Al-
though Chrome will keep the red crossed padlock icon in the
address bar because of the invalid certificate of the original
session, the attacker can still collect the session cookies for
any number of websites in the background.

Figure 9: Compromise of Pinned, HSTS Origin

Interestingly, since the only trust decision made by the
browser occurs when the bad certificate is accepted, this
attack is able to bypass all security protections in Chrome
against TLS MITM attacks. For instance, when a domain
enables HSTS, certificate warning on this domain can not
longer be clicked through by the user. Similarly, the Chrome
browser includes a pinning list of certificates used by top
websites, which successfully detected at least two man-in-
the-middle attacks that were using improperly issued trusted
certificates recently. Since these checks are only performed
when a certificate is validated, they fail to trigger on reused
connections, as shown in Figure 9. The user isn’t shown
any further certificate warning after the one caused by the
attacker on an innocuous domain.

Responsible Disclosure This bug (CVE-2014-3166) was
fixed by a security update for Chrome 36.

7. COUNTERMEASURES AND MITIGATION
Thorough this paper, we have pointed out multiple flaws

both at the transport and application levels that prevent
proper virtual host isolation on the server, and break the
same origin policy on the client as a result. In this section,
we summarize the possible countermeasures and mitigations
that can prevent this class of attacks at each network layer.

Preventing Virtual Host Fallback Our evaluation shows

server {
listen 1.2.3.4:443 ssl default_host;
server_name "";
# Used if no SNI is present in client hello
ssl_certificate "/etc/ssl/a.com.pem";
return 400;

}

Figure 10: Preventing virtual host fallback

that the fallback mechanism of the virtual host selection
algorithm in current HTTPS servers is by far the leading
factor in exploiting confusion vulnerabilities. For instance,
even though all the services hosted by Google suffer from
TLS session confusion, it cannot be directly exploited be-
cause all the front-end servers serve the same set of virtual
hosts without fallback. We propose that upon receiving a
request with a Host header that doesn’t match any of the
configured virtual host names, the server should immedi-
ately return an error. In particular, a request without a Host

header would always be rejected (thus breaking compatibil-
ity with HTTP/1.0 clients). While this change only needs
to apply to requests received over TLS, it does break back-
wards compatibility and may cause improperly configured
websites to stop working. Therefore, none of the vendors we
contacted are willing to implement such a change.

Authenticating Port in Host Header Currently, web
servers ignore the port indicated by the client in the Host

header, thus making it useless for the purpose of origin isola-
tion. We propose that for requests received over TLS, a web
server should compare the port included in the Host header
with the one the request was sent to. We argue that unless
this change is implemented in all HTTPS server software,
browsers should stop using the port for origin isolation pur-
poses, given that this isolation is mostly illusionary. This is
the approach currently adopted by Internet Explorer.

Preventing Cross-Virtual Host Resumption In HTTP
1.1, there is no circumstance under which a session negoti-
ated on a given virtual host would ever be resumed on an-
other host with a different name or certificate. However,
this invariant was broken with the introduction of SPDY
and HTTP2 connection sharing. Thus, our initial sugges-
tion to cryptographically bind TLS sessions with the virtual
host they were created for was rejected. However, since con-
nection sharing is only supposed to happen on the same
IP address, it still makes sense to strictly block resumption
across hosts on different TCP sockets. We convinced Ng-
inx to implement such an isolation both for their server-side
cache and session ticket implementation, starting from ver-
sion 1.7.5 (CVE-2014-3616).

Preventing SSL Downgrading The attack we present in
Section 4.3 was first to demonstrate that SSL downgrading
can be taken advantage of by a network attacker to exploit
virtual host confusion attacks. The recent POODLE at-
tack (CVE-2014-3566) also exploits downgrading to mount
a padding oracle attack; as a result, Chrome and NSS have
removed downgrading to SSL3. A draft has also been sub-
mitted to the TLS working group of the IETF to introduce a
new extension that prevents the attacker from downgrading
the TLS version [36].



Configuration Guidelines for Current Web Servers
Even without modifying web server software or the TLS li-
brary, there are some safe usage guidelines that website ad-
ministrators can use to mitigate the attacks described in this
paper. As a general rule, we recommend that only domains
with the same trust levels should be allowed to share a cer-
tificate. It is best to avoid wildcard certificates, as they are
valid even for non-existing subdomains, which increases the
likelihood of a virtual host fallback. Anytime a certificate
is used on a virtual host, it is necessary to ensure that all
the domain names it contains have a matching virtual host
configured on the same IP address and port; or at least a
default one that returns an error. The same check applies to
every other pair of IP address and port where this certificate
is used. For domains with wildcards, the associated virtual
host must use a regular expression that reflects all possible
names. In cases where only some of the domains in the cer-
tificate are served on this IP, it is necessary to configure an
explicit default host similar to the one given in Figure 10.

Session caches should be configured on a per-virtual host
basis. Furthermore, all the ticket keys and shared cache
names must be different in every virtual host where they
are defined, unless SPDY connection sharing is used.

Cross-protocol redirections should be avoided in all TLS-
enabled virtual hosts. When plaintext and encrypted ver-
sions of the same virtual host need to coexist, protocol-
relative URLs (such as //x.a.com/p) should be used.

Finally, whenever possible, it is best to avoid cookies alto-
gether, in particular to implement sessions: the origin-bound
localStorage provides a safer alternative. If cookie-based
sessions cannot be avoided (e.g. because a session cookie
must be available to multiple subdomains), the page that
sets the cookie should be served from the top-level domain
using the includeSubdomains option of HSTS.

8. RELATED WORK
Origin confusion attacks may target the same-origin pol-

icy at various levels in the browser. The policy for cookies
(which are always attached to requests regardless of their
source origin) is often abused to mount cross-site request
forgery attacks [20]. Implementations of single sign-on pro-
tocols [37] have been found to suffer from many flavors of ori-
gin confusion, sometimes on the messaging between frames
by postMessage [38], sometimes because of JavaScript bugs [39],
and often because of dangerous redirections [26,40].

Among the documented network attack on HTTPS [34],
the easiest is to trick clients into using HTTP instead; a
method called SSL stripping [41]. To prevent such attacks,
browsers and servers now implement Strict Transport Secu-
rity (HSTS) [42], which can itself be sometimes attacked [32,
43]. Virtual host confusion attacks apply even to websites
that use HSTS, since they rely on TLS credential sharing.
However, some of the concrete exploits in this paper rely on
some domains not requiring HSTS, for instance the exploit
against Dropbox from Section 4.2.

Typical man-in-the-middle attacks on HTTPS rely on DNS
rebinding [22, 44] or cache poisoning [45, 46] and on fooling
the client into accepting a bogus, mis-issued, or compelled
certificate [47,48]. The goal is for a network attacker to im-
personate a trusted HTTPS server [49]. Our attacks rely on
shared server credentials to obtain similar impact, but do
not require buggy clients [50], or on users clicking through
certificate warnings [51] on the attacked origin. Our threat

model, which mixes web and network attacks, is similar to
those of recent cryptographic attacks on HTTPS, notably
BEAST [52], CRIME [53] and FREAK [54], but the attacks
in this paper do not rely on cryptographic weaknesses.

There have been many proposals to improve the PKI such
as pinning [33], certificate transparency [55], or ARPKI [56],
but they fail to prevent our attacks, which rely on bad certifi-
cate practices (in particular, the use of wildcard and shared
certificates) by honest websites.

9. CONCLUSION
In this paper, we have have shown that the isolation be-

tween HTTPS origins in various kinds of shared environ-
ments (shared or overlapping certificate, content delivery
networks, shared session cache, different ports on the same
domain) can be broken by weaknesses in the handling of
HTTP requests and the isolation of TLS session caches,
resulting in high impact exploits. Preventing all virtual
host confusion attacks requires vendors of HTTP servers
to stop virtual host fallback when processing requests over
TLS. However, from the feedback we received when we dis-
closed these attacks, such a change is unlikely to occur. In
fact, virtual host confusion may become more common when
HTTP2 gets deployed, and features such as connection shar-
ing introduce a new ”same-certificate policy” approach that
can interfere badly with the same-origin policy enforced by
browsers. We leave to future work the question of how to
redesign HTTPS deployment to improve security isolation
in the presence of shared credentials and connections.
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